## Bi-Objective Lexicographic Optimization in Markov Decision Processes with Related Objectives

Damien Busatto-Gaston ${ }^{1}$ Debraj Chakraborty ${ }^{2}$ Anirban Majumdar ${ }^{3}$ Sayan Mukherjee ${ }^{3}$ Guillermo A. Pérez ${ }^{4}$ Jean-François Raskin ${ }^{3}$<br>1-Université Paris-Est Créteil, LACL, France<br>2-Masaryk University, Czech Republic<br>3-Université Libre de Bruxelles, Belgium 4-University of Antwerp, Belgium

Automated Technology for Verification and Analysis
Singapore, 2023

Example: Frozen lake


Example: Frozen lake


Example: Frozen lake


## Example: Frozen lake



- slips to different direction with some probability


## Example: Frozen lake



- slips to different direction with some probability


## Example：Frozen lake



- 岛 slips to different direction with some probability
- 過 cannot move through a


## Example: Frozen lake



- slips to different direction with some probability
- 题 cannot move through a


## Example：Frozen lake


－slips to different direction with some probability

- 噱 cannot move through a
- 发 cannot move anymore if it falls in a


## Example：Frozen lake


－sifer slips to different direction with some probability

- 慮 cannot move through a
- 发 cannot move anymore if it falls in a


## Example：Frozen lake


－slips to different direction with some probability
－噱 cannot move through a
－cannot move anymore if it falls in a
－過 wants to reach

## Example：Frozen lake



- 觜 slips to different direction with some probability
- 慮 cannot move through a
- 魊 cannot move anymore if it falls in a
- 過 wants to reach


## Example：Frozen lake



- 觜 slips to different direction with some probability
- 慮 cannot move through a
- 发 cannot move anymore if it falls in a $\oslash$




## Example：Frozen lake



- 觜 slips to different direction with some probability
- 噱 cannot move through a
－cannot move anymore if it falls in a

－Maximize $\mathbb{P}($ 䛜 $\rightsquigarrow \mathbb{\nabla})$


## Example：Frozen lake

## 00000 <br>  <br> 00000 <br> - 氙 slips to different direction with some probability <br> - 噱 cannot move through a <br>  <br> - 㮰 wants to reach <br> - Maximize $\mathbb{P}($ 岛 $) \rightsquigarrow \mathbb{V})$

## Example：Frozen lake



- 觜 slips to different direction with some probability
- 噱 cannot move through a
- 发 cannot move anymore if it falls in a $\oslash$
- 噱 wants to reach
- Maximize $\mathbb{P}($ 岛 $) \rightsquigarrow \mathbb{V})$
－Reach $\nabla$ as fast as possible

Markov Decision Process

Markov Decision Process


## Markov Decision Process



- Path : $\odot$

Reward: 0

$$
\nabla
$$

## Markov Decision Process



- Path : $\odot \xrightarrow{c}(1)$

Reward: 2

## Markov Decision Process



- Path : $\odot \stackrel{c}{\rightarrow} \oplus \xrightarrow{a} \oplus$

Reward: 3

## Markov Decision Process



- Path : $\odot \xrightarrow{c}(\mathbb{P} \xrightarrow{a}(1) \ldots$

Reward: 3

- Mean-payoff (MP): Average reward at limit : $\rho \mapsto \lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Reward}\left(\rho_{n}\right)$


## Markov Decision Process



- Strategy : Paths $\rightarrow$ Actions
, , $\checkmark$ -


## Markov Decision Process



- Strategy : Paths $\rightarrow$ Actions

$$
\{\because \mapsto c, \because \mapsto a, \because \mapsto a\}
$$

$\square$
$\square$
$\square$

## Markov Decision Process



- Strategy: Paths $\rightarrow$ Actions

$$
\{\Theta \mapsto c,(1) \mapsto a,() \mapsto a\}
$$

- Fixing a strategy creates a Markov chain



## Objectives

Find a strategy $\sigma$ that optimizes

## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$


## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$


## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

- Safety : probability to avoid the states $T \subseteq S$


## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

- Safety: probability to avoid the states $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \square \neg T\right)
$$

## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

- Safety : probability to avoid the states $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \square \neg T\right)
$$

- Lexicographic multi-objective :


## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

- Safety : probability to avoid the states $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \square \neg T\right)
$$

- Lexicographic multi-objective:
- Optimize objective 1


## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

- Safety : probability to avoid the states $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \square \neg T\right)
$$

- Lexicographic multi-objective :
- Optimize objective 1
- Optimize objective 2 among strategies optimizing objective 1


## Objectives

Find a strategy $\sigma$ that optimizes

- expected mean payoff $\mathbb{E}_{\sigma}(\mathrm{MP})$
- reachability : probability to reach the target $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \diamond T\right)
$$

- Safety : probability to avoid the states $T \subseteq S$

$$
\mathbb{P}_{\sigma}\left(s_{0} \models \square \neg T\right)
$$

- Lexicographic multi-objective:
- Optimize objective 1
- Optimize objective 2 among strategies optimizing objective 1
- ...


## Problem statement

Find a strategy $\sigma$ that

## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$


## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$ :

$$
\sigma \in \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}\left(s_{0} \models \diamond T\right)
$$

## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$ :

$$
\sigma \in \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}\left(s_{0} \models \diamond T\right)
$$

- Reach the target as soon as possible


## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$ :

$$
\sigma \in \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}\left(s_{0} \models \diamond T\right)=\Sigma_{\diamond T}
$$

- Reach the target as soon as possible


## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$ :

$$
\sigma \in \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}\left(s_{0} \models \diamond T\right)=\Sigma_{\diamond T}
$$

- Reach the target as soon as possible:
- Among $\sigma \in \Sigma_{\diamond T}$, expected conditional distance to target is minimum


## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$ :

$$
\sigma \in \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}\left(s_{0} \models \diamond T\right)=\Sigma_{\diamond T}
$$

- Reach the target as soon as possible:
- Among $\sigma \in \Sigma_{\diamond T}$, expected conditional distance to target is minimum:

$$
\sigma \in \underset{\sigma^{\prime} \in \Sigma_{\diamond T}}{\arg \min } \mathbb{E}_{\sigma^{\prime}}\left(\operatorname{len}_{T} \mid \diamond T\right)
$$

## Problem statement

Find a strategy $\sigma$ that

- Maximize the probability to reach the target $T \subseteq S$ :

$$
\sigma \in \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}\left(s_{0} \models \diamond T\right)=\Sigma_{\diamond T}
$$

- Reach the target as soon as possible:
- Among $\sigma \in \Sigma_{\Delta T}$, expected conditional distance to target is minimum:

$$
\sigma \in \underset{\sigma^{\prime} \in \Sigma_{\diamond T}}{\arg \min } \mathbb{E}_{\sigma^{\prime}}\left(\operatorname{len}_{T} \mid \diamond T\right)
$$

len $_{T}: \rho \mapsto$ length of the shortest prefix of $\rho$ reaching $T$

## Algorithm

## Find a strategy that

- maximizes the probability to reach the target,
- minimizes the conditional expected length to the target


## Algorithm

## Find a strategy that

- maximizes the probability to reach the target,
- minimizes the conditional expected length to the target



## Algorithm

## Find a strategy that

- maximizes the probability to reach the target,
- minimizes the conditional expected length to the target

- Remove all "bad" actions and states


## Algorithm

## Find a strategy that

- maximizes the probability to reach the target,
- minimizes the conditional expected length to the target

- Remove all "bad" actions and states
- "Redistribute" the probabilities


## Algorithm

Find a strategy that

- maximizes the probability to reach the target,
- minimizes the conditional expected length to the target

- Remove all "bad" actions and states
- "Redistribute" the probabilities
- Find strategy that minimizes the conditional expected length to the target


## Algorithm



## Algorithm

- Calculate values: $\operatorname{Val}(s)=\max _{\sigma} \mathbb{P}_{\sigma}(s \models \diamond(\square))$



## Algorithm

- Calculate values: $\operatorname{Val}(s)=\max _{\sigma} \mathbb{P}_{\sigma}(s \models \diamond(\square))$
- Remove bad action a from state $s$ s.t.

$$
\operatorname{Val}(s) \neq \sum_{s^{\prime}} P\left(s, a, s^{\prime}\right) \cdot \operatorname{Val}\left(s^{\prime}\right)
$$

- Remove bad states $s$ such that $\operatorname{Val}(s)=0$


## Algorithm

- Calculate values: $\operatorname{Val}(s)=\max _{\sigma} \mathbb{P}_{\sigma}(s \models \diamond(\square))$
- Remove bad action a from state $s$ s.t.

$$
\operatorname{Val}(s) \neq \sum_{s^{\prime}} P\left(s, a, s^{\prime}\right) \cdot \operatorname{Val}\left(s^{\prime}\right)
$$

- Remove bad states $s$ such that $\operatorname{Val}(s)=0$


## Algorithm

- Calculate values: $\operatorname{Val}(s)=\max _{\sigma} \mathbb{P}_{\sigma}(s \models \diamond(2))$
- Remove bad action a from state $s$ s.t.

$$
\operatorname{Val}(s) \neq \sum_{s^{\prime}} P\left(s, a, s^{\prime}\right) \cdot \operatorname{Val}\left(s^{\prime}\right)
$$

- Remove bad states $s$ such that $\operatorname{Val}(s)=0$
- Redistribute probabilities:

$$
P^{\prime}\left(s, a, s^{\prime}\right)=P\left(s, a, s^{\prime}\right) \cdot \frac{\operatorname{Val}\left(s^{\prime}\right)}{\operatorname{Val}(s)}
$$

## Algorithm

- Calculate values: $\operatorname{Val}(s)=\max _{\sigma} \mathbb{P}_{\sigma}(s \models \diamond(\square))$
- Remove bad action a from state $s$ s.t.

$$
\operatorname{Val}(s) \neq \sum_{s^{\prime}} P\left(s, a, s^{\prime}\right) \cdot \operatorname{Val}\left(s^{\prime}\right)
$$

- Remove bad states $s$ such that $\operatorname{Val}(s)=0$
- Redistribute probabilities:

$$
P^{\prime}\left(s, a, s^{\prime}\right)=P\left(s, a, s^{\prime}\right) \cdot \frac{\operatorname{Val}\left(s^{\prime}\right)}{\operatorname{Val}(s)}
$$

## Algorithm

- Calculate values: $\operatorname{Val}(s)=\max _{\sigma} \mathbb{P}_{\sigma}(s \models \diamond(2))$
- Remove bad action a from state $s$ s.t.

$$
\operatorname{Val}(s) \neq \sum_{s^{\prime}} P\left(s, a, s^{\prime}\right) \cdot \operatorname{Val}\left(s^{\prime}\right)
$$

- Remove bad states $s$ such that $\operatorname{Val}(s)=0$
- Redistribute probabilities:

$$
P^{\prime}\left(s, a, s^{\prime}\right)=P\left(s, a, s^{\prime}\right) \cdot \frac{\operatorname{Val}\left(s^{\prime}\right)}{\operatorname{Val}(s)}
$$

- Find the strategy arg $\min _{\sigma^{\prime}} \mathbb{E}_{\sigma^{\prime}}\left(\operatorname{len}_{\odot}\right)$ in $M^{\prime}$


## Explanation

## Explanation

- Change the probability measure by redistributing probabilities.


## Explanation

- Change the probability measure by redistributing probabilities.

$$
\mathbb{P}_{\sigma}^{\prime}(\cdot)=\mathbb{P}_{\sigma}(\cdot \mid \diamond())
$$

## Explanation

- Change the probability measure by redistributing probabilities.

$$
\begin{aligned}
& \qquad \mathbb{P}_{\sigma}^{\prime}(\cdot)=\mathbb{P}_{\sigma}(\cdot \mid \diamond(\square) \\
& \text { Probability in } M^{\prime}
\end{aligned}
$$

## Explanation

- Change the probability measure by redistributing probabilities.

$$
\begin{aligned}
\mathbb{P}_{\sigma}^{\prime}(\cdot)= & \mathbb{P}_{\sigma}(\cdot \mid \diamond()) \\
\text { Probability in } M^{\prime} & \text { Conditional probability in } M
\end{aligned}
$$

## Explanation

- Change the probability measure by redistributing probabilities.

$$
\begin{gathered}
\mathbb{P}_{\sigma}^{\prime}(\cdot)=\mathbb{P}_{\sigma}(\cdot \mid \diamond \bigoplus) \\
\text { Probability in } M^{\prime} \quad \text { Conditional probability in } M
\end{gathered}
$$

- Remove some suboptimal strategies


## Explanation

- Change the probability measure by redistributing probabilities.

$$
\begin{gathered}
\mathbb{P}_{\sigma}^{\prime}(\cdot)=\mathbb{P}_{\sigma}(\cdot \mid \diamond \bigoplus) \\
\text { Probability in } M^{\prime} \quad \text { Conditional probability in } M
\end{gathered}
$$

- Remove some suboptimal strategies such that optimizing objective 2 in $M^{\prime}$ automatically optimizes objective 1 in $M$.


## Explanation

- Change the probability measure by redistributing probabilities.

$$
\begin{gathered}
\mathbb{P}_{\sigma}^{\prime}(\cdot)=\mathbb{P}_{\sigma}(\cdot \mid \diamond \bigoplus) \\
\text { Probability in } M^{\prime} \quad \text { Conditional probability in } M
\end{gathered}
$$

- Remove some suboptimal strategies such that optimizing objective 2 in $M^{\prime}$ automatically optimizes objective 1 in $M$.



## Explanation

- Change the probability measure by redistributing probabilities.

$$
\begin{gathered}
\mathbb{P}_{\sigma}^{\prime}(\cdot)=\mathbb{P}_{\sigma}(\cdot \mid \diamond \bigoplus) \\
\text { Probability in } M^{\prime} \quad \text { Conditional probability in } M
\end{gathered}
$$

- Remove some suboptimal strategies such that optimizing objective 2 in $M^{\prime}$ automatically optimizes objective 1 in $M$.


$$
\begin{gathered}
\sigma \notin \underset{\sigma^{\prime}}{\arg \max } \mathbb{P}_{\sigma^{\prime}}^{M}\left(s_{0} \models \diamond(\bigcirc)\right) \\
\Downarrow \\
\mathbb{E}_{\sigma}^{M^{\prime}}\left(\operatorname{len}_{\overparen{O}}\right)=\infty
\end{gathered}
$$

## Experimental results

| layouts |  |  |  | $\mathbb{E}_{\text {storm }}\left(\right.$ (區 ${ }^{\text {m }}$ ¢ $\rightsquigarrow$ ) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.66 | 9 | 76.48 | 76.48 |
| 2 | 0.52 | 18 | 299.75 | 629.16 |
| 3 | 1.00 | 2 | 2.40 | 12.12 |
| 4 | 1.00 | 3 | 3.44 | 34.47 |
| 5 | 1.00 | 6 | 7.71 | 137.56 |
| 6 | 0.68 | 10 | 264.04 | 9598.81 |
| 7 | 1.00 | 5 | 112.69 | 9367.02 |
| 8 | 0.91 | 10 | 11.49 | 5879.63 |
| 9 | 1.00 | 3 | 3.66 | 5711.76 |
| 10 | 0.91 | 5 | 12.89 | 149357.57 |

Table: Comparison of expected conditional distance to the target given by the strategy optimizing distance and the strategy given by model checker Storm

## General problem

## General problem

Find a strategy $\sigma$ such that

## General problem

Find a strategy $\sigma$ such that

- Optimize objective $f$ :

$$
\sigma \in \operatorname{argopt}_{\sigma^{\prime}} \mathbb{P}_{\sigma^{\prime}}(f)=\Sigma_{f}
$$

## General problem

Find a strategy $\sigma$ such that

- Optimize objective $f$ :

$$
\sigma \in \operatorname{argopt}_{\sigma^{\prime}} \mathbb{P}_{\sigma^{\prime}}(f)=\Sigma_{f}
$$

- Optimize objective $g$ conditional to $f$ among strategies that optimize $f$ :

$$
\sigma \in \arg \operatorname{opt}_{\sigma^{\prime} \in \Sigma_{f}} \mathbb{E}_{\sigma^{\prime}}(g \mid f)
$$

## General problem

Find a strategy $\sigma$ such that

- Optimize objective $f$ :

$$
\sigma \in \operatorname{argopt}_{\sigma^{\prime}} \mathbb{P}_{\sigma^{\prime}}(f)=\Sigma_{f}
$$

- Optimize objective $g$ conditional to $f$ among strategies that optimize $f$ :

$$
\sigma \in \arg \operatorname{opt}_{\sigma^{\prime} \in \Sigma_{f}} \mathbb{E}_{\sigma^{\prime}}(g \mid f)
$$

We gave a prunning-based algorithm where:

| f | g |
| :---: | :---: |
|  |  |

## General problem

Find a strategy $\sigma$ such that

- Optimize objective $f$ :

$$
\sigma \in \operatorname{argopt}_{\sigma^{\prime}} \mathbb{P}_{\sigma^{\prime}}(f)=\Sigma_{f}
$$

- Optimize objective $g$ conditional to $f$ among strategies that optimize $f$ :

$$
\sigma \in \arg \operatorname{opt}_{\sigma^{\prime} \in \Sigma_{f}} \mathbb{E}_{\sigma^{\prime}}(g \mid f)
$$

We gave a prunning-based algorithm where:

| f | g |
| :---: | :---: |
| reachability | distance/cost to target |
|  |  |

## General problem

Find a strategy $\sigma$ such that

- Optimize objective $f$ :

$$
\sigma \in \operatorname{argopt}_{\sigma^{\prime}} \mathbb{P}_{\sigma^{\prime}}(f)=\Sigma_{f}
$$

- Optimize objective $g$ conditional to $f$ among strategies that optimize $f$ :

$$
\sigma \in \arg \operatorname{opt}_{\sigma^{\prime} \in \Sigma_{f}} \mathbb{E}_{\sigma^{\prime}}(g \mid f)
$$

We gave a prunning-based algorithm where:

| f | g |
| :---: | :---: |
| reachability <br> safety | distance/cost to target <br> mean payoff |
|  |  |

## General problem

Find a strategy $\sigma$ such that

- Optimize objective $f$ :

$$
\sigma \in \operatorname{argopt}_{\sigma^{\prime}} \mathbb{P}_{\sigma^{\prime}}(f)=\Sigma_{f}
$$

- Optimize objective $g$ conditional to $f$ among strategies that optimize $f$ :

$$
\sigma \in \arg \operatorname{opt}_{\sigma^{\prime} \in \Sigma_{f}} \mathbb{E}_{\sigma^{\prime}}(g \mid f)
$$

We gave a prunning-based algorithm where:

| f | g |
| :---: | :---: |
| reachability | distance/cost to target |
| safety | mean payoff |
| safety | any measurable function |

Thank You!

