
Monte Carlo Tree Search with Advice

Presented by : Debraj Chakraborty

December 20, 2022

Thesis jury: Emmanuel Filiot
Gilles Geeraerts
Jan Křet́ınský
Kim G. Larsen

Supervisor: Jean-François Raskin

◦ 1/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Introduction

I Bugs : Flaw in the software design causing incorrect results

I Software is everywhere

I Reliability of applications depends on the correctness of software

I Bugs can have fatal and costly consequences

◦ 2/35

Reactive systems

I Continuous interaction between system and environment

I System receives inputs from the environment and reacts by
producing outputs

SystemEnvironment

input

output

I Reactive systems may need to respect some specific properties

I Special methods needed to verify that they are bug-free

◦ 3/35

Reactive systems

I Continuous interaction between system and environment

I System receives inputs from the environment and reacts by
producing outputs

SystemEnvironment

input

output

I Reactive systems may need to respect some specific properties

I Special methods needed to verify that they are bug-free

◦ 3/35

Reactive systems

I Continuous interaction between system and environment

I System receives inputs from the environment and reacts by
producing outputs

SystemEnvironment

input

output

I Reactive systems may need to respect some specific properties

I Special methods needed to verify that they are bug-free

◦ 3/35

Reactive systems

I Continuous interaction between system and environment

I System receives inputs from the environment and reacts by
producing outputs

SystemEnvironment

input

output

I Reactive systems may need to respect some specific properties

I Special methods needed to verify that they are bug-free

◦ 3/35

Verification

Input :

I Model M of the system

I Formal specification ϕ to describe the property

Output : check all possible executions of M satisfy ϕ :

M |= ϕ

Checkable properties

I Safety : unwanted behaviour never happen.

I Liveness : desired behaviour eventually happen.

I Quantitative properties : energy consumption, cost etc

◦ 4/35

Verification

Input :

I Model M of the system

I Formal specification ϕ to describe the property

Output : check all possible executions of M satisfy ϕ :

M |= ϕ

Checkable properties

I Safety : unwanted behaviour never happen.

I Liveness : desired behaviour eventually happen.

I Quantitative properties : energy consumption, cost etc

◦ 4/35

Synthesis

I Automatic design of a system from the specification.

Input :

I Model M of the system

I Formal specification ϕ to describe the property

Output :

I Model M such that M |= ϕ,

I or No if no model exists.

I More difficult than verification

I 2-player game between system and environment

I Synthesis a strategy for the controller

◦ 5/35

Synthesis

I Automatic design of a system from the specification.

Input :

I Model M of the system

I Formal specification ϕ to describe the property

Output :

I Model M such that M |= ϕ,

I or No if no model exists.

I More difficult than verification

I 2-player game between system and environment

I Synthesis a strategy for the controller

◦ 5/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods

I Model checking : systematic check of the property in all states of
the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Different approaches for verification and synthesis

Formal methods
I Model checking : systematic check of the property in all states of

the model

I Exact efficient algorithms

I State explosion : number of states exceeds available memory

Strong guarantees Does not scale to larger systems

Learning-based methods

I Heuristic search : simulate possible behaviours of the model

I Machine learning : train a neural network

I Not a complete method

I Does not suffer from state explosion

Weaker guarantees Scales to larger systems

◦ 6/35

Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

I Markov decision process : model to represent systems

I Monte Carlo tree search : simulation-based heuristic search
algorithm

I Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

I Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice

◦ 7/35

Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

I Markov decision process : model to represent systems

I Monte Carlo tree search : simulation-based heuristic search
algorithm

I Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

I Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice

◦ 7/35

Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

I Markov decision process : model to represent systems

I Monte Carlo tree search : simulation-based heuristic search
algorithm

I Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

I Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice

◦ 7/35

Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

I Markov decision process : model to represent systems

I Monte Carlo tree search : simulation-based heuristic search
algorithm

I Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

I Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice

◦ 7/35

Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

I Markov decision process : model to represent systems

I Monte Carlo tree search : simulation-based heuristic search
algorithm

I Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

I Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice

◦ 7/35

Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

I Markov decision process : model to represent systems

I Monte Carlo tree search : simulation-based heuristic search
algorithm

I Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

I Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice

◦ 7/35

Markov Decision Process

I Controller taking decisions

I Stochastic model of the environment

I Reward as consequence of a decision

I Objective : Synthesis a controller strategy to maximize the reward

◦ 8/35

Markov Decision Process

run | 2

stand | −1

walk | 1 0.3

0.7

0.5

0.5

I Path :

run | 2−−−−−→ 0.3
9999K

stand | −1−−−−−−−−→ 0.5
9999K . . .

I Reward : 0

◦ 8/35

Markov Decision Process

run | 2

stand | −1

walk | 1 0.3

0.7

0.5

0.5

I Path :
run | 2−−−−−→ 0.3

9999K

stand | −1−−−−−−−−→ 0.5
9999K . . .

I Reward : 2

◦ 8/35

Markov Decision Process

run | 2

stand | −1

walk | 1 0.3

0.7

0.5

0.5

I Path :
run | 2−−−−−→ 0.3

9999K
stand | −1−−−−−−−−→ 0.5

9999K

. . .

I Reward : 1

◦ 8/35

Markov Decision Process

run | 2

stand | −1

walk | 1 0.3

0.7

0.5

0.5

I Path :
run | 2−−−−−→ 0.3

9999K
stand | −1−−−−−−−−→ 0.5

9999K . . .

I Reward : 1

◦ 8/35

Markov Decision Process

run | 2

stand | −1

walk | 1 0.3

0.7

0.5

0.5

I Strategy : Finite paths → Actions{
7→ run, 7→ stand

}

I Fixing a Strategy creates a Markov chain

◦ 8/35

Markov Decision Process

2run|

−1stand|

1walk| 0.3

0.7

0.5

0.5

I Strategy : Finite paths → Actions{
7→ run, 7→ stand

}
I Fixing a Strategy creates a Markov chain

◦ 8/35

Markov Decision Process

2run|

−1stand|

1walk| 0.3

0.7

0.5

0.5

I Finite-horizon reward ValH(s, σ) = Eσ [Reward(p)] for path p of
length H in the Markov chain

I Infinite-horizon average reward Val(s, σ) = limH→∞ 1
H ValH(s, σ)

I Optimal strategy arg maxσ Val(s, σ)

◦ 8/35

Example: Pac-Man

I Controller: Pac-Man

I Probabilistic model of ghosts

I Reward for eating food

I Large penalty for losing

I States: position of every agent,
what food is left

I Actions: Pac-Man moves

I Stochastic transitions: ghost moves

I Large MDP: ∼ 1016 states

◦ 9/35

Example: Pac-Man

I Controller: Pac-Man

I Probabilistic model of ghosts

I Reward for eating food

I Large penalty for losing

I States: position of every agent,
what food is left

I Actions: Pac-Man moves

I Stochastic transitions: ghost moves

I Large MDP: ∼ 1016 states

◦ 9/35

Example: Pac-Man

I Controller: Pac-Man

I Probabilistic model of ghosts

I Reward for eating food

I Large penalty for losing

I States: position of every agent,
what food is left

I Actions: Pac-Man moves

I Stochastic transitions: ghost moves

I Large MDP: ∼ 1016 states

◦ 9/35

Receding horizon control

I Unfolding of the MDP

I Optimize for total reward with a sliding window of H

I H large enough optimal strategy

I H not large enough terminal reward using a heuristic function to
estimate long-term behaviour

◦ 10/35

Receding horizon control

s0

s1

s1

s1

...

s2

...

a3

s2

s0

...

s2

...

a4

a3

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a1

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a2

............

∞

I Unfolding of the MDP

I Optimize for total reward with a sliding window of H

I H large enough optimal strategy

I H not large enough terminal reward using a heuristic function to
estimate long-term behaviour

◦ 10/35

Receding horizon control

s0

s1

s1

s1

...

s2

...

a3

s2

s0

...

s2

...

a4

a3

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a1

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a2

H

I Unfolding of the MDP

I Optimize for total reward with a sliding window of H

I H large enough optimal strategy

I H not large enough terminal reward using a heuristic function to
estimate long-term behaviour

◦ 10/35

Receding horizon control

s0

s1

s1

s1

...

s2

...

a3

s2

s0

...

s2

...

a4

a3

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a1

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a2

H

I Unfolding of the MDP

I Optimize for total reward with a sliding window of H

I H large enough optimal strategy

I H not large enough terminal reward using a heuristic function to
estimate long-term behaviour

◦ 10/35

Receding horizon control

s0

s1

s1

s1

...

s2

...

a3

s2

s0

...

s2

...

a4

a3

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a1

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a2

H

I Unfolding of the MDP

I Optimize for total reward with a sliding window of H

I H large enough optimal strategy

I H not large enough terminal reward using a heuristic function to
estimate long-term behaviour

◦ 10/35

Receding horizon control

s0

s1

s1

s1

...

s2

...

a3

s2

s0

...

s2

...

a4

a3

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a1

s2

s0

s1

...

s2

...

a1

s2

...

a2

s2

s0

...

s2

...

a4

a4

a2

H

I Unfolding of the MDP

I Optimize for total reward with a sliding window of H

I H large enough optimal strategy

I H not large enough terminal reward using a heuristic function to
estimate long-term behaviour

◦ 10/35

Heuristic search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Large unfolding heuristics

I Simulate paths to approximate values for actions

I Find the best action at the root

◦ 11/35

Heuristic search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Large unfolding heuristics

I Simulate paths to approximate values for actions

I Find the best action at the root

◦ 11/35

Monte Carlo tree search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Iterative construction of a search tree with value estimates

I Selection of a new node

 simulation update of the estimates

I The action with the best value is returned

◦ 12/35

Monte Carlo tree search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Iterative construction of a search tree with value estimates

I Selection of a new node

 simulation update of the estimates

I The action with the best value is returned

◦ 12/35

Monte Carlo tree search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Iterative construction of a search tree with value estimates

I Selection of a new node simulation

 update of the estimates

I The action with the best value is returned

◦ 12/35

Monte Carlo tree search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v′4

a1

v′1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

v

I Iterative construction of a search tree with value estimates

I Selection of a new node simulation update of the estimates

I The action with the best value is returned

◦ 12/35

Monte Carlo tree search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v′4

a1

v′1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

v

I Iterative construction of a search tree with value estimates

I Selection of a new node simulation update of the estimates

I The action with the best value is returned

◦ 12/35

Formal guarantees of MCTS [KS06]

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Select using upper confidence bound for trees strategy

I After a given number of iterations n, MCTS outputs the best action

I The probability of outputting a suboptimal action converges to zero

I vi converges to the real value of ai at a speed of (log n)/n

◦ 13/35

Formal guarantees of MCTS [KS06]

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Select using upper confidence bound for trees strategy

I After a given number of iterations n, MCTS outputs the best action

I The probability of outputting a suboptimal action converges to zero

I vi converges to the real value of ai at a speed of (log n)/n

◦ 13/35

Formal guarantees of MCTS [KS06]

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

I Select using upper confidence bound for trees strategy

I After a given number of iterations n, MCTS outputs the best action

I The probability of outputting a suboptimal action converges to zero

I vi converges to the real value of ai at a speed of (log n)/n

◦ 13/35

Advice

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

7 4 4 4 4 4 7 7 7 7 7 744

I An advice is a set of finite paths

I Defined symbolically as a logical formula ϕ

I ϕ defines a pruning of the unfolded MDP

◦ 14/35

Advice

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

7 4 4 4 4 4 7 7 7 7 7 744

I An advice is a set of finite paths

I Defined symbolically as a logical formula ϕ

I ϕ defines a pruning of the unfolded MDP

◦ 14/35

Example of advice in Pac-Man

I Some states are unsafe : ∨g ((x , y)p = (x , y)g)

I Advice ψ: set of safe paths : �≤H ¬unsafe

I Stronger advice: safety is ensured no matter what stochastic
transitions are taken

I Enforceable advice ϕ: set of paths where every action is compatible
with a strategy enforcing safety

◦ 15/35

Example of advice in Pac-Man

I Some states are unsafe : ∨g ((x , y)p = (x , y)g)

I Advice ψ: set of safe paths : �≤H ¬unsafe
I Stronger advice: safety is ensured no matter what stochastic

transitions are taken

I Enforceable advice ϕ: set of paths where every action is compatible
with a strategy enforcing safety

◦ 15/35

Example of advice in Pac-Man

I Some states are unsafe : ∨g ((x , y)p = (x , y)g)

I Advice ψ: set of safe paths : �≤H ¬unsafe
I Stronger advice: safety is ensured no matter what stochastic

transitions are taken

I Enforceable advice ϕ: set of paths where every action is compatible
with a strategy enforcing safety

◦ 15/35

Example of advice in Pac-Man

Computation of enforceable advice ϕ from ψ

I A first action a0 is compatible with ϕ iff

∀s1∃a1∀s2 . . . , s0a0s1a1s2 . . . |= ψ

I Can be formulated as a 2-player game to get a strategy

I ψ can be encoded as a Boolean Formula and use QBF solver to
inductively construct paths satisfying ϕ

Too restrictive : there may not be a strategy Empty advice

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 16/35

Example of advice in Pac-Man

Computation of enforceable advice ϕ from ψ

I A first action a0 is compatible with ϕ iff

∀s1∃a1∀s2 . . . , s0a0s1a1s2 . . . |= ψ

I Can be formulated as a 2-player game to get a strategy

I ψ can be encoded as a Boolean Formula and use QBF solver to
inductively construct paths satisfying ϕ

Too restrictive : there may not be a strategy Empty advice

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 16/35

Example of advice in Pac-Man

Too restrictive : there may not be a strategy Empty advice

More qualitative approach

I We enforce safety as much as possible

I From state s0, take the action maximizing probability to stay safe

a0 = arg max
a

max
σ|σ(s0)=a

Pσ(s0 |= ψ)

I This gives an advice enforced by a less restrictive strategy

I Can be computed using model checker Storm

I Calculated in a much smaller MDP (No food and faraway ghosts)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 17/35

Example of advice in Pac-Man

Too restrictive : there may not be a strategy Empty advice

More qualitative approach

I We enforce safety as much as possible

I From state s0, take the action maximizing probability to stay safe

a0 = arg max
a

max
σ|σ(s0)=a

Pσ(s0 |= ψ)

I This gives an advice enforced by a less restrictive strategy

I Can be computed using model checker Storm

I Calculated in a much smaller MDP (No food and faraway ghosts)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 17/35

Example of advice in Pac-Man

Too restrictive : there may not be a strategy Empty advice

More qualitative approach

I We enforce safety as much as possible

I From state s0, take the action maximizing probability to stay safe

a0 = arg max
a

max
σ|σ(s0)=a

Pσ(s0 |= ψ)

I This gives an advice enforced by a less restrictive strategy

I Can be computed using model checker Storm

I Calculated in a much smaller MDP (No food and faraway ghosts)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 17/35

Monte Carlo tree search with advice for Pac-Man

I Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

I Ensuring safety as much as possible enough to simulate among
safe paths

I Simulation advice : Simulate only among safe paths

0 20 40 60 80 100

MCTS

MCTS + selection advice

MCTS + simulation advice

MCTS + both advice

Human

87%

25%

44%

9%

56%

5%

39%

8%

36%

55%

90%

44%

Win Draw Loss

Figure: Summary of experiments for Pac-Man using MCTS with horizon 10, 40

iterations and 20 simulations per iterations. The games end in a draw after 300 steps.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 18/35

Monte Carlo tree search with advice for Pac-Man

I Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

I Ensuring safety as much as possible enough to simulate among
safe paths

I Simulation advice : Simulate only among safe paths

0 20 40 60 80 100

MCTS

MCTS + selection advice

MCTS + simulation advice

MCTS + both advice

Human

87%

25%

44%

9%

56%

5%

39%

8%

36%

55%

90%

44%

Win Draw Loss

Figure: Summary of experiments for Pac-Man using MCTS with horizon 10, 40

iterations and 20 simulations per iterations. The games end in a draw after 300 steps.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 18/35

Monte Carlo tree search with advice for Pac-Man

I Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

I Ensuring safety as much as possible enough to simulate among
safe paths

I Simulation advice : Simulate only among safe paths

0 20 40 60 80 100

MCTS

MCTS + selection advice

MCTS + simulation advice

MCTS + both advice

Human

87%

25%

44%

9%

56%

5%

39%

8%

36%

55%

90%

44%

Win Draw Loss

Figure: Summary of experiments for Pac-Man using MCTS with horizon 10, 40

iterations and 20 simulations per iterations. The games end in a draw after 300 steps.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 18/35

Monte Carlo tree search with advice for Pac-Man

I Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

I Ensuring safety as much as possible enough to simulate among
safe paths

I Simulation advice : Simulate only among safe paths

0 20 40 60 80 100

MCTS

MCTS + selection advice

MCTS + simulation advice

MCTS + both advice

Human

87%

25%

44%

9%

56%

5%

39%

8%

36%

55%

90%

44%

Win Draw Loss

Figure: Summary of experiments for Pac-Man using MCTS with horizon 10, 40

iterations and 20 simulations per iterations. The games end in a draw after 300 steps.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 18/35

Monte Carlo tree search with advice for Pac-Man

I Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

I Ensuring safety as much as possible enough to simulate among
safe paths

I Simulation advice : Simulate only among safe paths

0 20 40 60 80 100

MCTS

MCTS + selection advice

MCTS + simulation advice

MCTS + both advice

Human

87%

25%

44%

9%

56%

5%

39%

8%

36%

55%

90%

44%

Win Draw Loss

Figure: Summary of experiments for Pac-Man using MCTS with horizon 10, 40

iterations and 20 simulations per iterations. The games end in a draw after 300 steps.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 18/35

Monte Carlo tree search with advice

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

4 4 4 4 7 4 4 7 7 7 7 747

I Select actions in the unfolding pruned by a selection advice ϕ

I Simulation is restricted according to a simulation advice ψ

I We [BCR20] show that the convergence properties are maintained:
I for enforceable selection advice not pruning all optimal actions,
I for all simulation advice.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 19/35

Monte Carlo tree search with advice

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

4 4 4 4 7 4 4 7 7 7 7 747

I Select actions in the unfolding pruned by a selection advice ϕ

I Simulation is restricted according to a simulation advice ψ

I We [BCR20] show that the convergence properties are maintained:
I for enforceable selection advice not pruning all optimal actions,
I for all simulation advice.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 19/35

Monte Carlo tree search with advice

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

4 4 4 4 7 4 4 7 7 7 7 747

I Select actions in the unfolding pruned by a selection advice ϕ

I Simulation is restricted according to a simulation advice ψ

I We [BCR20] show that the convergence properties are maintained:
I for enforceable selection advice not pruning all optimal actions,
I for all simulation advice.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 19/35

Monte Carlo tree search with advice

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

4 4 4 4 7 4 4 7 7 7 7 747

I Select actions in the unfolding pruned by a selection advice ϕ

I Simulation is restricted according to a simulation advice ψ

I We [BCR20] show that the convergence properties are maintained:
I for enforceable selection advice not pruning all optimal actions,
I for all simulation advice.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 19/35

Example: Scheduling of hard and soft tasks

Task system

I Hard tasks : should never miss deadline

I Soft tasks : positive cost for missing deadline

Tasks are tuples (C ,D,A) such that

I D relative deadline of the task,

I C : distribution over possible computation times,

I A : distribution over finitely many possible inter-arrival times.

I Time is measured in CPU ticks

I Scheduler decides which active task gets CPU access

I Execution and inter-arrival time distributions are unknown to the
scheduler

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 20/35

Example: Scheduling of hard and soft tasks

Task system

I Hard tasks : should never miss deadline

I Soft tasks : positive cost for missing deadline

Tasks are tuples (C ,D,A) such that

I D relative deadline of the task,

I C : distribution over possible computation times,

I A : distribution over finitely many possible inter-arrival times.

I Time is measured in CPU ticks

I Scheduler decides which active task gets CPU access

I Execution and inter-arrival time distributions are unknown to the
scheduler

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 20/35

Example: Scheduling of hard and soft tasks

Task system

I Hard tasks : should never miss deadline

I Soft tasks : positive cost for missing deadline

Tasks are tuples (C ,D,A) such that

I D relative deadline of the task,

I C : distribution over possible computation times,

I A : distribution over finitely many possible inter-arrival times.

I Time is measured in CPU ticks

I Scheduler decides which active task gets CPU access

I Execution and inter-arrival time distributions are unknown to the
scheduler

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 20/35

Example: Scheduling of hard and soft tasks

Task system

I Hard tasks : should never miss deadline

I Soft tasks : positive cost for missing deadline

Tasks are tuples (C ,D,A) such that

I D relative deadline of the task,

I C : distribution over possible computation times,

I A : distribution over finitely many possible inter-arrival times.

I Time is measured in CPU ticks

I Scheduler decides which active task gets CPU access

I Execution and inter-arrival time distributions are unknown to the
scheduler

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 20/35

Task system as an MDP

States : For each tasks:

I remaining time to deadline,

I distribution over possible remaining computation times,

I distribution over possible times before next arrival.

Actions : Schedule tasks or stay idle

Stochastic transitions : Finish or kill an active task, submit a new task

Cost for soft tasks missing deadlines

Objective : Find a strategy for scheduler that

I avoids the states where some hard task misses the deadline,

I minimizes the expected mean-cost

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 21/35

Task system as an MDP

States : For each tasks:

I remaining time to deadline,

I distribution over possible remaining computation times,

I distribution over possible times before next arrival.

Actions : Schedule tasks or stay idle

Stochastic transitions : Finish or kill an active task, submit a new task

Cost for soft tasks missing deadlines

Objective : Find a strategy for scheduler that

I avoids the states where some hard task misses the deadline,

I minimizes the expected mean-cost

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 21/35

Task system as an MDP

I Execution and inter-arrival time distributions are not known to the
scheduler

I The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning

I Probably approximately correct (PAC): for all ε, γ ∈ (0, 1), can
approximate an ε-close task system, with probability ≥ 1− γ

I safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

I (safely) efficiently PAC learnable : (safely) PAC learnable, and can
learn in PTIME

(
size of the task system, 1

ε , 1
γ

)
I Task systems are not always safely or efficiently PAC-learnable

I Sufficient conditions for safe and efficient PAC-learning [BCG+21]

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 22/35

Task system as an MDP

I Execution and inter-arrival time distributions are not known to the
scheduler

I The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning

I Probably approximately correct (PAC): for all ε, γ ∈ (0, 1), can
approximate an ε-close task system, with probability ≥ 1− γ

I safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

I (safely) efficiently PAC learnable : (safely) PAC learnable, and can
learn in PTIME

(
size of the task system, 1

ε , 1
γ

)

I Task systems are not always safely or efficiently PAC-learnable

I Sufficient conditions for safe and efficient PAC-learning [BCG+21]

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 22/35

Task system as an MDP

I Execution and inter-arrival time distributions are not known to the
scheduler

I The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning

I Probably approximately correct (PAC): for all ε, γ ∈ (0, 1), can
approximate an ε-close task system, with probability ≥ 1− γ

I safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

I (safely) efficiently PAC learnable : (safely) PAC learnable, and can
learn in PTIME

(
size of the task system, 1

ε , 1
γ

)
I Task systems are not always safely or efficiently PAC-learnable

I Sufficient conditions for safe and efficient PAC-learning [BCG+21]

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 22/35

Task system as an MDP

I Execution and inter-arrival time distributions are not known to the
scheduler

I The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning

I Probably approximately correct (PAC): for all ε, γ ∈ (0, 1), can
approximate an ε-close task system, with probability ≥ 1− γ

I safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

I (safely) efficiently PAC learnable : (safely) PAC learnable, and can
learn in PTIME

(
size of the task system, 1

ε , 1
γ

)
I Task systems are not always safely or efficiently PAC-learnable

I Sufficient conditions for safe and efficient PAC-learning [BCG+21]

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 22/35

Scheduling of hard and soft tasks

I Model checkers can handle only relatively small task systems

I Use learning-based methods : MCTS, deep Q-learning

I Advice enforceable by safe strategies in MCTS

I Safe strategies to shield simulations during deep Q-learning

Earliest deadline first strategy

I Schedule hard task with earliest deadline

I If no hard tasks are active, schedule soft tasks

Strategy ensuring safety Easy to calculate Too restrictive

Most general safe scheduler

I Allow all actions compatible with any safe strategy

Allows maximal exploration Needs to be precomputed

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 23/35

Scheduling of hard and soft tasks

I Model checkers can handle only relatively small task systems

I Use learning-based methods : MCTS, deep Q-learning

I Advice enforceable by safe strategies in MCTS

I Safe strategies to shield simulations during deep Q-learning

Earliest deadline first strategy

I Schedule hard task with earliest deadline

I If no hard tasks are active, schedule soft tasks

Strategy ensuring safety Easy to calculate Too restrictive

Most general safe scheduler

I Allow all actions compatible with any safe strategy

Allows maximal exploration Needs to be precomputed

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 23/35

Scheduling of hard and soft tasks

I Model checkers can handle only relatively small task systems

I Use learning-based methods : MCTS, deep Q-learning

I Advice enforceable by safe strategies in MCTS

I Safe strategies to shield simulations during deep Q-learning

Earliest deadline first strategy

I Schedule hard task with earliest deadline

I If no hard tasks are active, schedule soft tasks

Strategy ensuring safety Easy to calculate Too restrictive

Most general safe scheduler

I Allow all actions compatible with any safe strategy

Allows maximal exploration Needs to be precomputed

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 23/35

Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task
MDP
size

Storm
output

MCTS
unsafe

MCTS
EDF

MCTS
MGS

DQL
unsafe

DQL
EDF

DQL
MGS

4S 105 0.38 0.52 N/A N/A 0.56 N/A N/A
5S 106 TimeOut 0 N/A N/A 0.13 N/A N/A
10S 1018 TimeOut 0 N/A N/A 0.96 N/A N/A
1H, 2S 104 0.07 0.67 0.28 0.14 0.24 0.22 0.11
1H, 3S 105 0.28 1.13 0.49 0.45 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0.2 0 ∞ 0.3 0.02
2H, 5S 1010 TimeOut 3.44 2.14 1.93 ∞ 2.48 2.39
3H, 6S 1014 TimeOut 4.17 2.97 2.88 ∞ 3.47 3.42
2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.6 1.42
4H, 12S 1030 TimeOut 2.1 1.3 1.2 ∞ 2.87 2.68

Comparison of MCTS and deep Q-learning.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24/35

Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task
MDP
size

Storm
output

MCTS
unsafe

MCTS
EDF

MCTS
MGS

DQL
unsafe

DQL
EDF

DQL
MGS

4S 105 0.38 0.52 N/A N/A 0.56 N/A N/A
5S 106 TimeOut 0 N/A N/A 0.13 N/A N/A
10S 1018 TimeOut 0 N/A N/A 0.96 N/A N/A
1H, 2S 104 0.07 0.67 0.28 0.14 0.24 0.22 0.11
1H, 3S 105 0.28 1.13 0.49 0.45 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0.2 0 ∞ 0.3 0.02
2H, 5S 1010 TimeOut 3.44 2.14 1.93 ∞ 2.48 2.39
3H, 6S 1014 TimeOut 4.17 2.97 2.88 ∞ 3.47 3.42
2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.6 1.42
4H, 12S 1030 TimeOut 2.1 1.3 1.2 ∞ 2.87 2.68

Comparison of MCTS and deep Q-learning.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24/35

Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task
MDP
size

Storm
output

MCTS
unsafe

MCTS
EDF

MCTS
MGS

DQL
unsafe

DQL
EDF

DQL
MGS

4S 105 0.38 0.52 N/A N/A 0.56 N/A N/A
5S 106 TimeOut 0 N/A N/A 0.13 N/A N/A
10S 1018 TimeOut 0 N/A N/A 0.96 N/A N/A
1H, 2S 104 0.07 0.67 0.28 0.14 0.24 0.22 0.11
1H, 3S 105 0.28 1.13 0.49 0.45 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0.2 0 ∞ 0.3 0.02
2H, 5S 1010 TimeOut 3.44 2.14 1.93 ∞ 2.48 2.39
3H, 6S 1014 TimeOut 4.17 2.97 2.88 ∞ 3.47 3.42
2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.6 1.42
4H, 12S 1030 TimeOut 2.1 1.3 1.2 ∞ 2.87 2.68

Comparison of MCTS and deep Q-learning.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24/35

Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task
MDP
size

Storm
output

MCTS
unsafe

MCTS
EDF

MCTS
MGS

DQL
unsafe

DQL
EDF

DQL
MGS

4S 105 0.38 0.52 N/A N/A 0.56 N/A N/A
5S 106 TimeOut 0 N/A N/A 0.13 N/A N/A
10S 1018 TimeOut 0 N/A N/A 0.96 N/A N/A
1H, 2S 104 0.07 0.67 0.28 0.14 0.24 0.22 0.11
1H, 3S 105 0.28 1.13 0.49 0.45 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0.2 0 ∞ 0.3 0.02
2H, 5S 1010 TimeOut 3.44 2.14 1.93 ∞ 2.48 2.39
3H, 6S 1014 TimeOut 4.17 2.97 2.88 ∞ 3.47 3.42
2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.6 1.42
4H, 12S 1030 TimeOut 2.1 1.3 1.2 ∞ 2.87 2.68

Comparison of MCTS and deep Q-learning.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24/35

Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task
MDP
size

Storm
output

MCTS
unsafe

MCTS
EDF

MCTS
MGS

DQL
unsafe

DQL
EDF

DQL
MGS

4S 105 0.38 0.52 N/A N/A 0.56 N/A N/A
5S 106 TimeOut 0 N/A N/A 0.13 N/A N/A
10S 1018 TimeOut 0 N/A N/A 0.96 N/A N/A
1H, 2S 104 0.07 0.67 0.28 0.14 0.24 0.22 0.11
1H, 3S 105 0.28 1.13 0.49 0.45 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0.2 0 ∞ 0.3 0.02
2H, 5S 1010 TimeOut 3.44 2.14 1.93 ∞ 2.48 2.39
3H, 6S 1014 TimeOut 4.17 2.97 2.88 ∞ 3.47 3.42
2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.6 1.42
4H, 12S 1030 TimeOut 2.1 1.3 1.2 ∞ 2.87 2.68

Comparison of MCTS and deep Q-learning.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24/35

Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task
MDP
size

Storm
output

MCTS
unsafe

MCTS
EDF

MCTS
MGS

DQL
unsafe

DQL
EDF

DQL
MGS

4S 105 0.38 0.52 N/A N/A 0.56 N/A N/A
5S 106 TimeOut 0 N/A N/A 0.13 N/A N/A
10S 1018 TimeOut 0 N/A N/A 0.96 N/A N/A
1H, 2S 104 0.07 0.67 0.28 0.14 0.24 0.22 0.11
1H, 3S 105 0.28 1.13 0.49 0.45 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0.2 0 ∞ 0.3 0.02
2H, 5S 1010 TimeOut 3.44 2.14 1.93 ∞ 2.48 2.39
3H, 6S 1014 TimeOut 4.17 2.97 2.88 ∞ 3.47 3.42
2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.6 1.42
4H, 12S 1030 TimeOut 2.1 1.3 1.2 ∞ 2.87 2.68

Comparison of MCTS and deep Q-learning.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24/35

Neural advice

0 20 40 60 80 100

MCTS + simulation advice

MCTS + both advice

44%

9%

55%

90%

Win Draw Loss

MCTS

+ sim. adv.

9.0 sec

9.0 sec

Sel. Adv.

N/A

8.4 sec

Figure : Summary of experiments for Pac-Man using MCTS with a simulation advice.

I Using model checker for advice is costly in terms of time

I Neural advice : Use a neural network to imitate an advice

I Imitation learning : Framework to mimic a strategy

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 25/35

Neural advice

0 20 40 60 80 100

MCTS + simulation advice

MCTS + both advice

44%

9%

55%

90%

Win Draw Loss

MCTS

+ sim. adv.

9.0 sec

9.0 sec

Sel. Adv.

N/A

8.4 sec

Figure : Summary of experiments for Pac-Man using MCTS with a simulation advice.

I Using model checker for advice is costly in terms of time

I Neural advice : Use a neural network to imitate an advice

I Imitation learning : Framework to mimic a strategy

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 25/35

Neural advice

0 20 40 60 80 100

MCTS + simulation advice

MCTS + both advice

44%

9%

55%

90%

Win Draw Loss

MCTS

+ sim. adv.

ε

ε

Sel. Adv.

N/A

8.4 sec

Figure : Summary of experiments for Pac-Man using MCTS with a simulation advice.

I Using model checker for advice is costly in terms of time

I Neural advice : Use a neural network to imitate an advice

I Imitation learning : Framework to mimic a strategy

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 25/35

Neural advice

0 20 40 60 80 100

MCTS + simulation advice

MCTS + both advice

44%

9%

55%

90%

Win Draw Loss

MCTS

+ sim. adv.

ε

ε

Sel. Adv.

N/A

8.4 sec

Figure : Summary of experiments for Pac-Man using MCTS with a simulation advice.

I Using model checker for advice is costly in terms of time

I Neural advice : Use a neural network to imitate an advice

I Imitation learning : Framework to mimic a strategy

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 25/35

Neural advice

0 20 40 60 80 100

MCTS + simulation advice

MCTS + both advice

44%

9%

55%

90%

Win Draw Loss

MCTS

+ sim. adv.

ε

ε

Sel. Adv.

N/A

8.4 sec

Figure : Summary of experiments for Pac-Man using MCTS with a simulation advice.

I Using model checker for advice is costly in terms of time

I Neural advice : Use a neural network to imitate an advice

I Imitation learning : Framework to mimic a strategy

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 25/35

Example : Frozen Lake

I Controller: Robot

I Slips to different direction
with small probability

I Reward for reaching target

I States: position of the robot

I Actions: Robot’s decision

I Stochastic transitions: Robot’s
actual move

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 26/35

Example : Frozen Lake

Exact algorithm

I Strategy maximizing probability to reach the target quickly

Opt(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= ♦ target)

fσ(s, a) =

{
minσ|σ(s)=a E(distance to target) if a ∈ Opt(s)

∞ otherwise.

I σ(s) = arg mina(fσ(s, a))

Heuristic algorithm

I Monte Carlo tree search : σ(s) = arg maxa value(s, a)

Imitation learning

I Train a neural network NN to learn fσ or value

I Learnt strategy : σlearnt(s) = arg opta NN(s, a)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 27/35

Example : Frozen Lake

Exact algorithm

I Strategy maximizing probability to reach the target quickly

Opt(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= ♦ target)

fσ(s, a) =

{
minσ|σ(s)=a E(distance to target) if a ∈ Opt(s)

∞ otherwise.

I σ(s) = arg mina(fσ(s, a))

Heuristic algorithm

I Monte Carlo tree search : σ(s) = arg maxa value(s, a)

Imitation learning

I Train a neural network NN to learn fσ or value

I Learnt strategy : σlearnt(s) = arg opta NN(s, a)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 27/35

Example : Frozen Lake

Exact algorithm

I Strategy maximizing probability to reach the target quickly

Opt(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= ♦ target)

fσ(s, a) =

{
minσ|σ(s)=a E(distance to target) if a ∈ Opt(s)

∞ otherwise.

I σ(s) = arg mina(fσ(s, a))

Heuristic algorithm

I Monte Carlo tree search : σ(s) = arg maxa value(s, a)

Imitation learning

I Train a neural network NN to learn fσ or value

I Learnt strategy : σlearnt(s) = arg opta NN(s, a)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 27/35

Example : Frozen Lake

Exact algorithm

I Strategy maximizing probability to reach the target quickly

Opt(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= ♦ target)

fσ(s, a) =

{
minσ|σ(s)=a E(distance to target) if a ∈ Opt(s)

∞ otherwise.

I σ(s) = arg mina(fσ(s, a))

Heuristic algorithm

I Monte Carlo tree search : σ(s) = arg maxa value(s, a)

Imitation learning

I Train a neural network NN to learn fσ or value

I Learnt strategy : σlearnt(s) = arg opta NN(s, a)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 27/35

Example : Frozen Lake

Evaluating the learnt strategy

I Traditional approaches : loss function, accuracy

I Traditional approaches may not be sufficient
I Error in one critical state can be enough for the stategy to

perform bad

I Use statistical model checking to compare the strategies
I Simulate a set of paths and compare statistics

◦ ◦ ◦ ◦ ◦ ◦ ◦ 28/35

Example : Frozen Lake

Evaluating the learnt strategy

I Traditional approaches : loss function, accuracy

I Traditional approaches may not be sufficient
I Error in one critical state can be enough for the stategy to

perform bad

I Use statistical model checking to compare the strategies
I Simulate a set of paths and compare statistics

◦ ◦ ◦ ◦ ◦ ◦ ◦ 28/35

Example : Frozen Lake

Evaluating the learnt strategy

I Traditional approaches : loss function, accuracy

I Traditional approaches may not be sufficient

I Error in one critical state can be enough for the stategy to
perform bad

I Use statistical model checking to compare the strategies
I Simulate a set of paths and compare statistics

◦ ◦ ◦ ◦ ◦ ◦ ◦ 28/35

Example : Frozen Lake

Evaluating the learnt strategy

I Traditional approaches : loss function, accuracy

I Traditional approaches may not be sufficient
I Error in one critical state can be enough for the stategy to

perform bad

I Use statistical model checking to compare the strategies
I Simulate a set of paths and compare statistics

◦ ◦ ◦ ◦ ◦ ◦ ◦ 28/35

Example : Frozen Lake

Evaluating the learnt strategy

I Traditional approaches : loss function, accuracy

I Traditional approaches may not be sufficient
I Error in one critical state can be enough for the stategy to

perform bad

I Use statistical model checking to compare the strategies
I Simulate a set of paths and compare statistics

◦ ◦ ◦ ◦ ◦ ◦ ◦ 28/35

Example : Frozen Lake

0 20 40 60 80 100

Storm

Strategy learnt
from Storm

MCTS

Strategy learnt
from MCTS

93%

81%

77%

69%

Percentage of wins

Win Draw Loss

Figure: Imitation learning of perfect vs MCTS-based strategies

I Data from exact methods noise-free data better learnt strategy

◦ ◦ ◦ ◦ ◦ ◦ 29/35

Example : Frozen Lake

0 20 40 60 80 100

Storm

Strategy learnt
from Storm

MCTS

Strategy learnt
from MCTS

93%

81%

77%

69%

Percentage of wins

Win Draw Loss

Figure: Imitation learning of perfect vs MCTS-based strategies

I Data from exact methods noise-free data better learnt strategy

◦ ◦ ◦ ◦ ◦ ◦ 29/35

Neural advice in Pac-Man

I Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

σ(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Too costly to compute the advice in terms of time

I Train a neural network offline to learn

fσ(s, a) = max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Neural advice enforced by the strategy which takes the action
maximizing value given by the network

σNN(s) = arg max
a

NN(s, a)

◦ ◦ ◦ ◦ ◦ 30/35

Neural advice in Pac-Man

I Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

σ(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Too costly to compute the advice in terms of time

I Train a neural network offline to learn

fσ(s, a) = max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Neural advice enforced by the strategy which takes the action
maximizing value given by the network

σNN(s) = arg max
a

NN(s, a)

◦ ◦ ◦ ◦ ◦ 30/35

Neural advice in Pac-Man

I Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

σ(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Too costly to compute the advice in terms of time

I Train a neural network offline to learn

fσ(s, a) = max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Neural advice enforced by the strategy which takes the action
maximizing value given by the network

σNN(s) = arg max
a

NN(s, a)

◦ ◦ ◦ ◦ ◦ 30/35

Neural advice in Pac-Man

I Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

σ(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Too costly to compute the advice in terms of time

I Train a neural network offline to learn

fσ(s, a) = max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Neural advice enforced by the strategy which takes the action
maximizing value given by the network

σNN(s) = arg max
a

NN(s, a)

◦ ◦ ◦ ◦ ◦ 30/35

Neural advice in Pac-Man

I Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

σ(s) = arg max
a

max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Too costly to compute the advice in terms of time

I Train a neural network offline to learn

fσ(s, a) = max
σ|σ(s)=a

Pσ(s |= �≤H ¬unsafe)

I Neural advice enforced by the strategy which takes the action
maximizing value given by the network

σNN(s) = arg max
a

NN(s, a)

◦ ◦ ◦ ◦ ◦ 30/35

Neural advice in Pac-Man

How we should generate data for the neural network?

I Randomly generate states and actions

Poor performance

Dataset aggregation algorithm (DAgger)
Iteratively add more data in the training dataset

I Generate states from running simulations using learnt strategy

I Add new states to the dataset and learn a new strategy

Realistic view of the states frequently encountered

Sharp dataset aggregation algorithm (Sharp DAgger)

I Add counter-example to the dataset if the neural network is
performing poorly

Focuses at finding states where correct decision is crucial

◦ ◦ ◦ ◦ 31/35

Neural advice in Pac-Man

How we should generate data for the neural network?

I Randomly generate states and actions

Poor performance

Dataset aggregation algorithm (DAgger)
Iteratively add more data in the training dataset

I Generate states from running simulations using learnt strategy

I Add new states to the dataset and learn a new strategy

Realistic view of the states frequently encountered

Sharp dataset aggregation algorithm (Sharp DAgger)

I Add counter-example to the dataset if the neural network is
performing poorly

Focuses at finding states where correct decision is crucial

◦ ◦ ◦ ◦ 31/35

Neural advice in Pac-Man

How we should generate data for the neural network?

I Randomly generate states and actions

Poor performance

Dataset aggregation algorithm (DAgger)
Iteratively add more data in the training dataset

I Generate states from running simulations using learnt strategy

I Add new states to the dataset and learn a new strategy

Realistic view of the states frequently encountered

Sharp dataset aggregation algorithm (Sharp DAgger)

I Add counter-example to the dataset if the neural network is
performing poorly

Focuses at finding states where correct decision is crucial

◦ ◦ ◦ ◦ 31/35

Neural advice in Pac-Man

Learning a neural advice

expert Strategy
using Storm

1 2 3 4 5 6 Strategy learnt
from random data

0

20

40

60

80

100

70%

9%

26%

41%

56% 58% 57%

18%

P
er
ce
n
ta
g
e
of

sa
fe

g
am

es

Safe Not safe

Strategies learnt from from sharp DAgger

Training dataset size : 32k 158k 176k 190k 200k 226k 226k

Figure: Sharp DAgger for strategy to stay safe in Pac-Man

I Symbolic advice enforceable by a strategy with 70% safety rate
I Neural advice enforceable by a strategy with 58% safety rate
I Strategy learnt from random data has 18% safety rate

◦ ◦ ◦ 32/35

Neural advice in Pac-Man

Learning a neural advice

expert Strategy
using Storm

1 2 3 4 5 6 Strategy learnt
from random data

0

20

40

60

80

100

70%

9%

26%

41%

56% 58% 57%

18%

P
er
ce
n
ta
g
e
of

sa
fe

g
am

es

Safe Not safe

Strategies learnt from from sharp DAgger

Training dataset size : 32k 158k 176k 190k 200k 226k 226k

Figure: Sharp DAgger for strategy to stay safe in Pac-Man

I Symbolic advice enforceable by a strategy with 70% safety rate
I Neural advice enforceable by a strategy with 58% safety rate
I Strategy learnt from random data has 18% safety rate

◦ ◦ ◦ 32/35

Experimental results : Pac-Man

Monte Carlo tree search with neural advice

0 20 40 60 80 100

MCTS + simulation advice

MCTS + simulation advice
+ symbolic advice at root

MCTS + simulation advice
+ neural advice at root

MCTS + simulation advice
+ neural advice at all nodes

44%

9%

29%

13%

55%

90%

71%

87%

Win Draw Loss

MCTS

+ sim. adv.

ε

ε

ε

ε

Sel. Adv.

N/A

8.4 sec

ε′

ε′

Figure: Summary of experiments with neural advice for Pac-Man

◦ ◦ 33/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Conclusion

I How to inject domain knowledge in MCTS?
I Symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I Enforceable advice with an optimality assumption

I How to implement them?
I Using model checkers

I How to decrease computation time for implementing symbolic
advice?
I By imitating the advice by neural network

I How to generate data for the neural network?
I Using a counter-example guided dataset aggregation loop

I Does it work?
I Good results with multiple examples

◦ 34/35

Thank You!

35/35

	Symbolic advice
	Monte Carlo tree search with advice
	Neural advice

