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Introduction

» Bugs : Flaw in the software design causing incorrect results
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Introduction

» Bugs : Flaw in the software design causing incorrect results

Leave meeting

Try turning your computer off and on again

n Fatal exception OE at 0028:C0011E36

» Software is everywhere

» Reliability of applications depends on the correctness of software
» Bugs can have fatal and costly consequences



Reactive systems

» Continuous interaction between system and environment
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Reactive systems

» Continuous interaction between system and environment

» System receives inputs from the environment and reacts by
producing outputs

input

output
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Reactive systems

» Continuous interaction between system and environment

» System receives inputs from the environment and reacts by
producing outputs

input

output

» Reactive systems may need to respect some specific properties
» Special methods needed to verify that they are bug-free
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Verification

Input :

» Model M of the system

» Formal specification ¢ to describe the property
Output : check all possible executions of M satisfy ¢ :

M= ¢
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Verification

Input :

» Model M of the system

» Formal specification ¢ to describe the property
Output : check all possible executions of M satisfy ¢ :

M= ¢

Checkable properties

» Safety : unwanted behaviour never happen.
» Liveness : desired behaviour eventually happen.
» Quantitative properties : energy consumption, cost etc
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Synthesis

» Automatic design of a system from the specification.
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Synthesis

» Automatic design of a system from the specification.

Input :

» Model M of the system

» Formal specification ¢ to describe the property
Output :

» Model M such that M = ¢,

» or No if no model exists.

» More difficult than verification
» 2-player game between system and environment
» Synthesis a strategy for the controller
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Different approaches for verification and synthesis
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Formal methods
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Formal methods

» Model checking : systematic check of the property in all states of
the model
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Formal methods

» Model checking : systematic check of the property in all states of
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Different approaches for verification and synthesis

Formal methods
» Model checking : systematic check of the property in all states of
the model

» Exact efficient algorithms
> State explosion : number of states exceeds available memory
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Different approaches for verification and synthesis

Formal methods

» Model checking : systematic check of the property in all states of
the model

» Exact efficient algorithms
> State explosion : number of states exceeds available memory

© Strong guarantees ©® Does not scale to larger systems
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Different approaches for verification and synthesis

Formal methods

» Model checking : systematic check of the property in all states of
the model

» Exact efficient algorithms
> State explosion : number of states exceeds available memory

© Strong guarantees ©® Does not scale to larger systems

Learning-based methods
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Different approaches for verification and synthesis

Formal methods

» Model checking : systematic check of the property in all states of
the model

» Exact efficient algorithms

> State explosion : number of states exceeds available memory
© Strong guarantees ©® Does not scale to larger systems
Learning-based methods

» Heuristic search : simulate possible behaviours of the model
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» Exact efficient algorithms
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© Strong guarantees ©® Does not scale to larger systems
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Formal methods
» Model checking : systematic check of the property in all states of
the model
» Exact efficient algorithms
> State explosion : number of states exceeds available memory

© Strong guarantees ©® Does not scale to larger systems

Learning-based methods
» Heuristic search : simulate possible behaviours of the model
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» Not a complete method
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Different approaches for verification and synthesis

Formal methods

» Model checking : systematic check of the property in all states of
the model

» Exact efficient algorithms
> State explosion : number of states exceeds available memory

© Strong guarantees ©® Does not scale to larger systems

Learning-based methods

» Heuristic search : simulate possible behaviours of the model
» Machine learning : train a neural network
» Not a complete method

» Does not suffer from state explosion
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Different approaches for verification and synthesis

Formal methods

» Model checking : systematic check of the property in all states of
the model

» Exact efficient algorithms
> State explosion : number of states exceeds available memory

© Strong guarantees ©® Does not scale to larger systems

Learning-based methods
» Heuristic search : simulate possible behaviours of the model
» Machine learning : train a neural network
» Not a complete method
» Does not suffer from state explosion

© Weaker guarantees © Scales to larger systems
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Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees
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Hybrid algorithms that scales for large systems and provides guarantees
Outline of the presentation

» Markov decision process : model to represent systems
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Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees
Outline of the presentation

» Markov decision process : model to represent systems

» Monte Carlo tree search : simulation-based heuristic search
algorithm
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Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

» Markov decision process : model to represent systems
» Monte Carlo tree search : simulation-based heuristic search
algorithm

» Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods
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Objective of the thesis

Hybrid algorithms that scales for large systems and provides guarantees

Outline of the presentation

>
>

Markov decision process : model to represent systems

Monte Carlo tree search : simulation-based heuristic search
algorithm

Monte Carlo tree search with symbolic advice : augmenting MCTS
with techniques from formal methods

Monte Carlo tree search with neural advice : using neural network to
imitate and replace the symbolic advice
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Markov Decision Process

» Controller taking decisions

» Stochastic model of the environment

» Reward as consequence of a decision

» Objective : Synthesis a controller strategy to maximize the reward
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Markov Decision Process
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> Path: %

» Reward : 0
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Markov Decision Process
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Markov Decision Process

run |2 :
11‘(:]1.'|1C K —|>$— 03 ﬁ-

@ _ By
> Path: 5" 12,03 & stand | -1 05 &}
» Reward : 1
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Markov Decision Process
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11‘(:]1.'|1C K —|>$— 03 ﬁ-

@ _ By
> Path: 5" 12,03 & stand | -1 05 &}
» Reward : 1

@ 0o 0o 0o oo 0o o0 000 0O 0OOU OO OO O OO OO OGOTOO O O



Markov Decision Process

) run|2
walk | 1 R
I\

» Strategy : Finite paths

— Actions

{ — run,ﬁ_ — stand}
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Markov Decision Process

» Strategy : Finite paths — Actions

{ — run,ﬁ_ — stand}

» Fixing a Strategy creates a Markov chain
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Markov Decision Process

» Finite-horizon reward Valy(s, o) = E, [Reward(p)] for path p of
length H in the Markov chain

> Infinite-horizon average reward Val(s, o) = limy_o0 3 Valu(s, o)

» Optimal strategy arg max,, Val(s, o)
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Example: Pac-Man

> States: position of every agent,
what food is left

» Actions: Pac-Man moves

» Controller: Pac-Man
» Probabilistic model of ghosts

» Stochastic transitions: ghost moves
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Example: Pac-Man

> States: position of every agent,

> . _
Controller: Pac-Man what food is left

> P ilisti | of gh .
robabilistic model of ghosts > Actions: Pac-Man moves

» Reward for eating food . -
& » Stochastic transitions: ghost moves

» Large penalty for losing
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Example: Pac-Man

» Controller: Pac-Man

» Probabilistic model of ghosts
» Reward for eating food

» Large penalty for losing

> States: position of every agent,
what food is left

» Actions: Pac-Man moves
» Stochastic transitions: ghost moves
» Large MDP: ~ 10 states
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Receding horizon control
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Receding horizon control
()
’/*/\ /\,

7P AP AP
96 9592090 000 60!

> Unfoldlng of the MDP
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Receding horizon control

A //\\, ]
T 7 T |
ONERO OO ONERON

» Unfolding of the MDP
» Optimize for total reward with a sliding window of H
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Receding horizon control

R ®
olololole

» Unfolding of the MDP
» Optimize for total reward with a sliding window of H
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Receding horizon control

R ®
olololole

» Unfolding of the MDP
» Optimize for total reward with a sliding window of H

» H large enough ~~ optimal strategy
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Receding horizon control

» Unfolding of the MDP
» Optimize for total reward with a sliding window of H
» H large enough ~~ optimal strategy

» H not large enough ~~ terminal reward using a heuristic function to
estimate long-term behaviour
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Heuristic search

» Large unfolding ~~ heuristics
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Heuristic search
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Large unfolding ~~ heuristics

» Simulate paths to approximate values for actions

>

Find the best action at the root
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Monte Carlo tree search

» [terative construction of a search tree with value estimates

@ o 0o 0 o0 o0 o0 o0 o000 o0 OOOO OOOOOO O O 12/35



Monte Carlo tree search

» [terative construction of a search tree with value estimates

» Selection of a new node
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Monte Carlo tree search

» [terative construction of a search tree with value estimates

» Selection of a new node ~~ simulation
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Monte Carlo tree search

» [terative construction of a search tree with value estimates

» Selection of a new node ~~ simulation ~~ update of the estimates
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Monte Carlo tree search

» [terative construction of a search tree with value estimates
» Selection of a new node ~~ simulation ~~ update of the estimates
» The action with the best value is returned
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Formal guarantees of MCTS [KS06]
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> Select using upper confidence bound for trees strategy

> After a given number of iterations n, MCTS outputs the best action
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Formal guarantees of MCTS [KS06]
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> Select using upper confidence bound for trees strategy

> After a given number of iterations n, MCTS outputs the best action

» The probability of outputting a suboptimal action converges to zero
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Formal guarantees of MCTS [KS06]
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> Select using upper confidence bound for trees strategy
> After a given number of iterations n, MCTS outputs the best action
» The probability of outputting a suboptimal action converges to zero

> v; converges to the real value of a; at a speed of (logn)/n
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Advice
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» An advice is a set of finite paths

» Defined symbolically as a logical formula ¢



Advice

d ? ﬂ ?
@@@@@@

» An advice is a set of finite paths
» Defined symbolically as a logical formula ¢
» ¢ defines a pruning of the unfolded MDP
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Example of advice in PAC-MAN

> Some states are unsafe : Vg((x,¥)p = (X,¥)g)
» Advice ¢: set of safe paths : O<F —unsafe
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Example of advice in PAC-MAN

> Some states are unsafe : Vg((x,¥)p = (X,¥)g)
» Advice ¢: set of safe paths : O<F —unsafe

» Stronger advice: safety is ensured no matter what stochastic
transitions are taken

@ 0o o 0o oo oo 00000 o0 O0OOTO OO OO O O



Example of advice in PAC-MAN

> Some states are unsafe : Vg((x,¥)p = (X,¥)g)
» Advice ¢: set of safe paths : O<F —unsafe

» Stronger advice: safety is ensured no matter what stochastic
transitions are taken

» Enforceable advice ¢: set of paths where every action is compatible
with a strategy enforcing safety
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Example of advice in PAC-MAN

Computation of enforceable advice ¢ from v

» A first action ap is compatible with ¢ iff
Vs;dai1Vsy ..., spapsiaise ... =

» Can be formulated as a 2-player game to get a strategy

» 1) can be encoded as a Boolean Formula and use QBF solver to
inductively construct paths satisfying ¢
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Example of advice in PAC-MAN

Computation of enforceable advice ¢ from v

» A first action ap is compatible with ¢ iff
Vs;dai1Vsy ..., spapsiaise ... =

» Can be formulated as a 2-player game to get a strategy

» 1) can be encoded as a Boolean Formula and use QBF solver to
inductively construct paths satisfying ¢

@ Too restrictive : there may not be a strategy ~» Empty advice

00
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Example of advice in PAC-MAN

@ Too restrictive : there may not be a strategy ~ Empty advice

e =

(o)
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Example of advice in PAC-MAN

@ Too restrictive : there may not be a strategy ~ Empty advice

e =

(o)

More qualitative approach

» We enforce safety as much as possible
» From state sp, take the action maximizing probability to stay safe

ap = arg max ma>)< P,(s0 = v)

a  olo(

@ o 0o o o oo 00000 000 0 O O O



Example of advice in PAC-MAN

@ Too restrictive : there may not be a strategy ~ Empty advice

e =

(o)

More qualitative approach

» We enforce safety as much as possible
» From state sp, take the action maximizing probability to stay safe

ap = arg max ma>)< P,(s0 = v)

a  olo(

» This gives an advice enforced by a less restrictive strategy
» Can be computed using model checker STORM
» Calculated in a much smaller MDP (No food and faraway ghosts)
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Monte Carlo tree search with advice for PAc-MAN
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Monte Carlo tree search with advice for PAc-MAN

» Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase
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Monte Carlo tree search with advice for PAC-MAN

» Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

» Ensuring safety as much as possible ~» enough to simulate among
safe paths
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Monte Carlo tree search with advice for PAC-MAN

» Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

» Ensuring safety as much as possible ~» enough to simulate among
safe paths

» Simulation advice : Simulate only among safe paths
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Monte Carlo tree search with advice for PAC-MAN

» Selection advice : At the root, select among actions maximizing the
probability to stay safe during the selection phase

» Ensuring safety as much as possible ~» enough to simulate among

safe paths

» Simulation advice : Simulate only among safe paths
:
MCTS [[8% [5%] 87%

MCTS + selection advice 36% [ 39% [ 25%
MCTS + simulation advice 55% [T 44%
MCTS + both advice 90% 9%
Human 44% [ 56%
0 2‘() 4‘() ()"0 8‘0 100

@ Win O Draw [ Loss

Figure: Summary of experiments for PAC-MAN using MCTS with horizon 10, 40

iterations and 20 simulations per iterations. The games end in a draw after 300 steps.
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Monte Carlo tree search with advice
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Monte Carlo tree search with advice

> Select actions in the unfolding pruned by a selection advice ¢
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Monte Carlo tree search with advice

> Select actions in the unfolding pruned by a selection advice ¢

» Simulation is restricted according to a simulation advice
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Monte Carlo tree search with advice

>
>
>

R
So |

A

NP

Select actions in the unfolding pruned by a selection advice ¢
Simulation is restricted according to a simulation advice 1
We [BCR20] show that the convergence properties are maintained:

» for enforceable selection advice not pruning all optimal actions,
» for all simulation advice.
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Example: Scheduling of hard and soft tasks



Example: Scheduling of hard and soft tasks

Task system

» Hard tasks : should never miss deadline

» Soft tasks : positive cost for missing deadline
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Example: Scheduling of hard and soft tasks

Task system

» Hard tasks : should never miss deadline

» Soft tasks : positive cost for missing deadline

Tasks are tuples (C, D, A) such that
» D relative deadline of the task,
» C : distribution over possible computation times,

» A distribution over finitely many possible inter-arrival times.
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Example: Scheduling of hard and soft tasks

Task system

» Hard tasks : should never miss deadline

» Soft tasks : positive cost for missing deadline

Tasks are tuples (C, D, A) such that
» D relative deadline of the task,

» C : distribution over possible computation times,

» A distribution over finitely many possible inter-arrival times.

» Time is measured in CPU ticks
» Scheduler decides which active task gets CPU access

» Execution and inter-arrival time distributions are unknown to the
scheduler

@ 0o o 0o oo 0o oo 00 0 o0 o0 o0 O 20/35



Task system as an MDP

States : For each tasks:
» remaining time to deadline,
» distribution over possible remaining computation times,
» distribution over possible times before next arrival.

Actions : Schedule tasks or stay idle
Stochastic transitions : Finish or kill an active task, submit a new task

Cost for soft tasks missing deadlines
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Task system as an MDP

States : For each tasks:
» remaining time to deadline,
» distribution over possible remaining computation times,
» distribution over possible times before next arrival.

Actions : Schedule tasks or stay idle
Stochastic transitions : Finish or kill an active task, submit a new task

Cost for soft tasks missing deadlines

Objective : Find a strategy for scheduler that
» avoids the states where some hard task misses the deadline,

» minimizes the expected mean-cost
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Task system as an MDP

» Execution and inter-arrival time distributions are not known to the
scheduler

» The scheduler needs to learn the distributions using sampling before
it can construct the MDP
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Task system as an MDP

» Execution and inter-arrival time distributions are not known to the
scheduler

» The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning
» Probably approximately correct (PAC): for all ¢,y € (0,1), can
approximate an e-close task system, with probability > 1 —
» safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

> (safely) efficiently PAC learnable : (safely) PAC learnable, and can

learn in PT/ME(size of the task system, % %)
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Task system as an MDP

>

>

Execution and inter-arrival time distributions are not known to the
scheduler

The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning

>

>

Probably approximately correct (PAC): for all €,y € (0,1), can
approximate an e-close task system, with probability > 1 —

safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

(safely) efficiently PAC learnable : (safely) PAC learnable, and can

learn in PT/ME(size of the task system, % %)

Task systems are not always safely or efficiently PAC-learnable
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Task system as an MDP

» Execution and inter-arrival time distributions are not known to the
scheduler

» The scheduler needs to learn the distributions using sampling before
it can construct the MDP

Guarantees about learning
» Probably approximately correct (PAC): for all ¢,y € (0,1), can
approximate an e-close task system, with probability > 1 —~

» safely PAC learnable: PAC learnable, and can ensure safety for the
hard tasks while learning

> (safely) efficiently PAC learnable : (safely) PAC learnable, and can

learn in PT/ME(size of the task system, % %)

» Task systems are not always safely or efficiently PAC-learnable
> Sufficient conditions for safe and efficient PAC-learning [BCG™21]
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Scheduling of hard and soft tasks

» Model checkers can handle only relatively small task systems
» Use learning-based methods : MCTS, deep Q-learning

» Advice enforceable by safe strategies in MCTS

> Safe strategies to shield simulations during deep Q-learning
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Scheduling of hard and soft tasks

» Model checkers can handle only relatively small task systems
» Use learning-based methods : MCTS, deep Q-learning

» Advice enforceable by safe strategies in MCTS

> Safe strategies to shield simulations during deep Q-learning

Earliest deadline first strategy

» Schedule hard task with earliest deadline
» If no hard tasks are active, schedule soft tasks
© Strategy ensuring safety © Easy to calculate ® Too restrictive
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Scheduling of hard and soft tasks

» Model checkers can handle only relatively small task systems
» Use learning-based methods : MCTS, deep Q-learning

» Advice enforceable by safe strategies in MCTS

> Safe strategies to shield simulations during deep Q-learning

Earliest deadline first strategy

» Schedule hard task with earliest deadline
» If no hard tasks are active, schedule soft tasks
© Strategy ensuring safety © Easy to calculate ® Too restrictive

Most general safe scheduler

» Allow all actions compatible with any safe strategy
© Allows maximal exploration & Needs to be precomputed
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Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task MDP | STorM | MCTS [ MCTS | MCTS [ DQL | DQL [ DQL

as size output unsafe | EDF MGS unsafe | EDF | MGS
45 10° 0.38 0.52 N/A N/A 0.56 N/A | N/A
55 105 | TimeOut | 0 N/A | N/A [013 N/A | N/A
10S 10 | TimeOut | 0 N/A N/A 0.96 N/A | N/A
1H,2S || 10* 0.07 0.67 0.28 0.14 0.24 022 [ 011
1H,3S || 10° 0.28 1.13 0.49 0.45 00 0.47 | 0.47
2H, 1S || 10* 0 0.92 0.2 0 00 0.3 [0.02
2H, 55 10 | TimeOut | 3.44 2.14 1.93 00 248 | 2.39
3H, 65 10™ | TimeOut | 4.17 2.97 2.88 00 3.47 | 3.42
2H, 10S || 1022 | TimeOut | 0.3 0.03 0.03 00 16 | 1.42
4H,12S || 10® | TimeOut | 2.1 13 1.2 00 287 | 2.68

Comparison of MCTS and deep Q-learning.

@ o o 0o o o o 0o 0o 0o 0o o



Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task MDP | STorM | MCTS [ MCTS | MCTS [ DQL | DQL [ DQL

as size output unsafe | EDF MGS unsafe | EDF | MGS
45 10° 0.38 0.52 N/A N/A 0.56 N/A | N/A
55 105 | TimeOut | 0 N/A | N/A [013 N/A | N/A
10S 10 | TimeOut | 0 N/A~ | N/A [0.96 N/A | N/A
1H,2S | 10* | 0.07 0.67 0.28 0.14 024 (022 |0.11
1H,3S || 10° 0.28 1.13 0.49 0.45 o0 0.47 | 0.47
2H, 1S [[10* |o 0.92 0.2 0 00 0.3 |0.02
2H, 55 101 [ TimeOut | 3.44 2.14 1.93 00 2.48 | 2.39
3H,6S || 10" | TimeOut | 4.17 2.97 2.88 00 347 | 3.42
2H, 10S || 102 | TimeOut | 0.3 0.03 0.03 00 16 | 142
4H, 125 || 103 | TimeOut | 2.1 13 1.2 o0 2.87 | 2.68

Comparison of MCTS and deep Q-learning.
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Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task MDP [ STorm ['MCTS'| MCTS [ MCTS | DQL [ DQL | DQL

size output unsafe | EDF MGS unsafe | EDF | MGS
45 10° 0.38 0.52 N/A N/A 0.56 N/A | N/A
55 108 TimeOut | 0 N/A N/A 0.13 N/A | N/A
10S 10 | TimeOut | 0 N/A | N/A [0.96 N/A | N/A
1H, 2S 10* 0.07 0.67 0.28 0.14 0.24 022 [ 011
1H, 3S 10° 0.28 1.13 0.49 0.45 00 0.47 | 0.47
2H, 1S 10* 0 0.92 0.2 0 00 0.3 [0.02
2H, 55 10 | TimeOut | 3.44 2.14 1.93 00 248 | 2.39
3H, 65 10™ | TimeOut | 4.17 2.97 2.88 00 3.47 | 3.42
2H, 10S || 1022 | TimeOut | 0.3 0.03 0.03 00 16 | 1.42
4H,12S || 10® | TimeOut | 2.1 1.3 1.2 00 287 | 2.68

Comparison of MCTS and deep Q-learning.
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Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task MDP [ STorm | MCTS | MCTS | MCTS [F/DQL" DQL | DQL

as size output unsafe | EDF MGS unsafe EDF | MGS
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Scheduling of hard and soft tasks

Average cost over 600 steps for task systems

Task MDP [ STorm | MCTS | MCTS | MCTS | DQL | DQL | DQL

size output unsafe | EDF MGS unsafe | EDF | MGS
45 10° 0.38 0.52 N/A N/A 0.56 N/A | N/A
55 105 | TimeOut | 0 N/A | N/A [013 N/A | N/A
10S 10 | TimeOut | 0 N/A N/A 0.96 N/A | N/A
1H, 2S 10* 0.07 0.67 0.28 0.14 0.24 022 [ 011
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4H,12S || 10® | TimeOut | 2.1 1.3 1.2 00 287 | 2.68

Comparison of MCTS and deep Q-learning.
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Neural advice

MCTS
+ sim. adv. Sel. Adv.

MCTS + simulation advice 9.0 sec N/ A

MCTS + both advice 9.0 sec | 8.4 sec

B Win 3 Draw B Loss |

Figure : Summary of experiments for PAC-MAN using MCTS with a simulation advice.
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Neural advice

MCTS
+ sim. adv. Sel. Adv.

MCTS + simulation advice N / A

MCTS + both advice 8.4 sec |

B Win 3 Draw B Loss |

Figure : Summary of experiments for PAC-MAN using MCTS with a simulation advice.
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Neural advice

MCTS
+ sim. adv. Sel. Adv.

MCTS + simulation advice 55% || 44% € N/A -
MCTS + both advice 90% 9% €
| | | |
0 20 40 60 80 100
[EYWin O Draw B Loss |

Figure : Summary of experiments for PAC-MAN using MCTS with a simulation advice.

» Using model checker for advice is costly in terms of time
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Neural advice

MCTS
+ sim. adv. Sel. Adv.

MCTS + simulation advice 55% || 44% € N/A -
MCTS + both advice 90% 9% €
| | | |
0 20 40 60 80 100
[EYWin O Draw B Loss |

Figure : Summary of experiments for PAC-MAN using MCTS with a simulation advice.

» Using model checker for advice is costly in terms of time
» Neural advice : Use a neural network to imitate an advice

» Imitation learning : Framework to mimic a strategy
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Example : Frozen Lake
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» Controller: Robot

» Slips to different direction
with small probability

» Reward for reaching target
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» States: position of the robot
» Actions: Robot's decision

» Stochastic transitions: Robot's

actual move
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Example : Frozen Lake

Exact algorithm

» Strategy maximizing probability to reach the target quickly

Opt(s) = arg max max P,(s = ¢ target)

olo(s)=a

f(s.3) = MiN, |, (s)=a E(distance to target) if a € Opt(s)
T oo otherwise.

> o(s) = argmin,(f,(s, a))
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Example : Frozen Lake

Exact algorithm

» Strategy maximizing probability to reach the target quickly

Opt(s) = arg max max P,(s = ¢ target)

olo(s)=a

f(s.3) = MiN, |, (s)=a E(distance to target) if a € Opt(s)
T oo otherwise.

> o(s) = argmin,(f,(s, a))

Heuristic algorithm

> Monte Carlo tree search : o(s) = arg max, value(s, a)
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Example : Frozen Lake

Exact algorithm

» Strategy maximizing probability to reach the target quickly

Opt(s) = arg max ma)x P, (s | ¢ target)

olo(s)=a

f(s.3) = MiN, |, (s)=a E(distance to target) if a € Opt(s)
T oo otherwise.
> o(s) = argmin,(f,(s, a))

Heuristic algorithm

> Monte Carlo tree search : o(s) = arg max, value(s, a)

Imitation learning

» Train a neural network NN to learn 7, or value
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Example : Frozen Lake

Exact algorithm

» Strategy maximizing probability to reach the target quickly

Opt(s) = arg max ma)x P, (s | ¢ target)

olo(s)=a

f(s.3) = MiN, |, (s)=a E(distance to target) if a € Opt(s)
T oo otherwise.

> o(s) = argmin,(f,(s, a))

Heuristic algorithm

> Monte Carlo tree search : o(s) = arg max, value(s, a)

Imitation learning

» Train a neural network NN to learn 7, or value

> Learnt strategy : Olearnt(S) = argopt, NN(s, a)
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Example : Frozen Lake

Evaluating the learnt strategy
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Example : Frozen Lake

Evaluating the learnt strategy

» Traditional approaches : loss function, accuracy
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Example : Frozen Lake

Evaluating the learnt strategy

» Traditional approaches : loss function, accuracy

» Traditional approaches may not be sufficient
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Example : Frozen Lake

Evaluating the learnt strategy

» Traditional approaches : loss function, accuracy
» Traditional approaches may not be sufficient

» Error in one critical state can be enough for the stategy to
perform bad

SR SR CRCR <
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Example : Frozen Lake

Evaluating the learnt strategy

» Traditional approaches : loss function, accuracy
» Traditional approaches may not be sufficient

» Error in one critical state can be enough for the stategy to
perform bad

SR SR CRCR <
1€ «
V9@ e
1 ©) «
LLVLL L

» Use statistical model checking to compare the strategies
» Simulate a set of paths and compare statistics
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Example : Frozen Lake

STORM

Strategy learnt
from STORM

MCTS

Strategy learnt
from MCTS ! ! ! ‘
0 20 40 60 80 100

Percentage of wins

E Win O Draw 3 Loss

Figure: Imitation learning of perfect vs MCTS-based strategies
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Example : Frozen Lake

STORM

Strategy learnt
from STORM

MCTS

Strategy learnt
from MCTS | | | |
0 20 40 60 80 100

Percentage of wins

E Win O Draw 3 Loss

Figure: Imitation learning of perfect vs MCTS-based strategies

» Data from exact methods ~~ noise-free data ~~ better learnt strategy
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Neural advice in PAC-MAN
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Neural advice in PAC-MAN

» Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

o(s) = argmax max P, (s = O —unsafe)
a olo(s)=a
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Neural advice in PAC-MAN

» Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

o(s) = arg max |m(a)x P, (s = O<" —unsafe)
o|o(s)=a

» Too costly to compute the advice in terms of time
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Neural advice in PAC-MAN

» Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

o(s) = arg max |m(a)x P, (s = O<" —unsafe)
o|o(s)=a

» Too costly to compute the advice in terms of time
» Train a neural network offline to learn

f,(s,a)= max P,(s = O<" —unsafe)

olo(s)=a
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Neural advice in PAC-MAN

» Symbolic advice enforced by the strategy which takes the action
maximizing probability to stay safe

o(s) = arg max |m(a)x P, (s = O<" —unsafe)
o|o(s)=a

» Too costly to compute the advice in terms of time
» Train a neural network offline to learn

f,(s,a)= max P,(s = O<" —unsafe)

olo(s)=a

» Neural advice enforced by the strategy which takes the action
maximizing value given by the network

onn(s) = argmax NN(s, a)
a
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Neural advice in PAC-MAN

How we should generate data for the neural network?

» Randomly generate states and actions

® Poor performance
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Neural advice in PAC-MAN

How we should generate data for the neural network?

» Randomly generate states and actions

® Poor performance

Dataset aggregation algorithm (DAgger)

Iteratively add more data in the training dataset
» Generate states from running simulations using learnt strategy
» Add new states to the dataset and learn a new strategy

© Realistic view of the states frequently encountered
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Neural advice in PAC-MAN

How we should generate data for the neural network?

» Randomly generate states and actions

® Poor performance

Dataset aggregation algorithm (DAgger)

Iteratively add more data in the training dataset
» Generate states from running simulations using learnt strategy
» Add new states to the dataset and learn a new strategy

© Realistic view of the states frequently encountered

Sharp dataset aggregation algorithm (Sharp DAgger)

» Add counter-example to the dataset if the neural network is
performing poorly

© Focuses at finding states where correct decision is crucial

@ o o o o 31/35



Neural advice in PAC-MAN

Learning a neural advice

Training dataset size : 32k 158k 176k 190k 200k 226k 226k
100
80
60 |-

57%

40+

Percentage of safe games

20

0
expert Strategy 1 2 3 4 5 6 Strategy learnt
using STORM Strategies learnt from from sharp DAgger from random data

Figure: Sharp DAgger for strategy to stay safe in PAC-MAN
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Neural advice in PAC-MAN

Learning a neural advice

Training dataset size : 32k 158k 176k 190k 200k 226k 226k
100
80 - b
0%

=
T

| |s6% 58%

L |41%

Percentage of safe games

40 4
[ [26%
20 [ |18% |
L] o%
0 ] . ] N
expert Strategy 1 2 3 4 5 6 Strategy learnt
using STORM Strategies learnt from from sharp DAgger from random data

DSafedNot safe

Figure: Sharp DAgger for strategy to stay safe in PAC-MAN

» Symbolic advice enforceable by a strategy with 70% safety rate
» Neural advice enforceable by a strategy with 58% safety rate
> Strategy learnt from random data has 18% safety rate
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Experimental results : PAC-MAN

Monte Carlo tree search with neural advice

MCTS
+ sim. adv. Sel. Adv.
MCTS + simulation advice |
€ N/A
MCTS + simulation advice i
+ symbolic advice at root € 8.4 sec

MCTS + simulation advice B

+ neural advice at root € ¢
MCTS + simulation advice , i
+ neural advice at all nodes ) ) ) ) ¢ €

0 20 40 60 80 100

B Win O Draw [ Loss

Figure: Summary of experiments with neural advice for PAC-MAN
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Conclusion
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Conclusion

How to inject domain knowledge in MCTS?
» Symbolic advice for selection and simulation
How to preserve the convergence guarantees of MCTS?
» Enforceable advice with an optimality assumption
How to implement them?
» Using model checkers

How to decrease computation time for implementing symbolic
advice?

» By imitating the advice by neural network
How to generate data for the neural network?

» Using a counter-example guided dataset aggregation loop
Does it work?

» Good results with multiple examples



Thank You!
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