
Explaining Control Policies
through Predicate Decision Diagrams

Debraj Chakraborty1 Clemens Dubslaff2 Sudeep Kanav1

Jan Křet́ınský1,3 Christoph Weinhuber4

1-Masaryk University, Czech Republic
2-Eindhoven University of Technology, The Netherlands
3-Technical University of Munich, Germany
4-University of Oxford, United Kingdom

Hybrid Systems: Computation and Control
Irvine, California, May 2025

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 1/17



Controller

Controller
System

action ∈ {↑, ↓,←,→}

state = (x , y , . . .)

▶ Control Policy : States → Actions

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 2/17



Controller

Controller
System

action ∈ {↑, ↓,←,→}

state = (x , y , . . .)

▶ Control Policy : States → Actions

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 2/17



Controller

Controller
System

action ∈ {↑, ↓,←,→}

state = (x , y , . . .)

▶ Control Policy : States → Actions

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 2/17



Controller

Controller
System

action ∈ {↑, ↓,←,→}

state = (x , y , . . .)

▶ Control Policy : States → Actions

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 2/17



Control Policy

▶ Control Policy : States → Actions

▶ Hard to construct manually

▶ Automated synthesis creates huge lookup tables

▶ Lacks explainability

...

57048 0 1 2 3 4 5 6 7 8

57049 0 1 3 4 6 7

57050 0 1 3 4 6 7

57054 2 5

57055 1 2 4 5

57056 1 2 4 5

57057 0 1 2 3 4 5

57058 0 1 2 3 4 5

57059 0 1 2 3 4 5

57063 1 2 4 5

57064 1 2 4 5

57065 0 1 2 3 4 5

...

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 3/17



Control Policy

▶ Control Policy : States → Actions

▶ Hard to construct manually

▶ Automated synthesis creates huge lookup tables

▶ Lacks explainability

...

57048 0 1 2 3 4 5 6 7 8

57049 0 1 3 4 6 7

57050 0 1 3 4 6 7

57054 2 5

57055 1 2 4 5

57056 1 2 4 5

57057 0 1 2 3 4 5

57058 0 1 2 3 4 5

57059 0 1 2 3 4 5

57063 1 2 4 5

57064 1 2 4 5

57065 0 1 2 3 4 5

...

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 3/17



Control Policy

▶ Control Policy : States → Actions

▶ Hard to construct manually

▶ Automated synthesis creates huge lookup tables

▶ Lacks explainability

...

57048 0 1 2 3 4 5 6 7 8

57049 0 1 3 4 6 7

57050 0 1 3 4 6 7

57054 2 5

57055 1 2 4 5

57056 1 2 4 5

57057 0 1 2 3 4 5

57058 0 1 2 3 4 5

57059 0 1 2 3 4 5

57063 1 2 4 5

57064 1 2 4 5

57065 0 1 2 3 4 5

...

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 3/17



Control Policy

▶ Control Policy : States → Actions

▶ Hard to construct manually

▶ Automated synthesis creates huge lookup tables

▶ Lacks explainability

...

57048 0 1 2 3 4 5 6 7 8

57049 0 1 3 4 6 7

57050 0 1 3 4 6 7

57054 2 5

57055 1 2 4 5

57056 1 2 4 5

57057 0 1 2 3 4 5

57058 0 1 2 3 4 5

57059 0 1 2 3 4 5

57063 1 2 4 5

57064 1 2 4 5

57065 0 1 2 3 4 5

...

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 3/17



Explainable Control Policy

▶ States are defined by multiple state variables

▶ Predicates: comparison between variables and values

▶ Axis-aligned: x ≥ 2

▶ Linear: x + y < 7

▶ Categorical: colour = red

▶ Decision Trees: Explainability through predicates

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 4/17



Explainable Control Policy

▶ States are defined by multiple state variables

▶ Predicates: comparison between variables and values

▶ Axis-aligned: x ≥ 2

▶ Linear: x + y < 7

▶ Categorical: colour = red

▶ Decision Trees: Explainability through predicates

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 4/17



Explainable Control Policy

▶ States are defined by multiple state variables

▶ Predicates: comparison between variables and values

▶ Axis-aligned: x ≥ 2

▶ Linear: x + y < 7

▶ Categorical: colour = red

▶ Decision Trees: Explainability through predicates

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 4/17



Explainable Control Policy

▶ States are defined by multiple state variables

▶ Predicates: comparison between variables and values

▶ Axis-aligned: x ≥ 2

▶ Linear: x + y < 7

▶ Categorical: colour = red

▶ Decision Trees: Explainability through predicates

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 4/17



Decistion Trees (DT)

▶ Binary tree

▶ Internal nodes = predicates

▶ Branches = True/False outcome of that predicate

▶ Leaf nodes = actions

Easy to visualize and interpret

Often redundant due to repeated subtrees

battery ≤ 0.15

temp ≤ 21

temp ≤ 19

Off

AC

Heating Off

True False

True False

True False

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 5/17



Decistion Trees (DT)

▶ Binary tree

▶ Internal nodes = predicates

▶ Branches = True/False outcome of that predicate

▶ Leaf nodes = actions

Easy to visualize and interpret

Often redundant due to repeated subtrees

battery ≤ 0.15

temp ≤ 21

temp ≤ 19

Off

AC

Heating Off

True False

True False

True False

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 5/17



Binary Decision Diagrams (BDD)

▶ Directed acyclic graph

▶ Internal nodes = Boolean variables

▶ Multi-terminal BDD: Leaf nodes = actions

▶ Reduced BDD: No redundant nodes

▶ Ordered BDD: Fixed variable order

Compact representation

Non-Boolean variables require bit-blasting

Direct human interpretation is difficult

x1

x2

x3

x2

x3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 6/17



Binary Decision Diagrams (BDD)

▶ Directed acyclic graph

▶ Internal nodes = Boolean variables

▶ Multi-terminal BDD: Leaf nodes = actions

▶ Reduced BDD: No redundant nodes

▶ Ordered BDD: Fixed variable order

Compact representation

Non-Boolean variables require bit-blasting

Direct human interpretation is difficult

x1

x2

x3

x2

x3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 6/17



Binary Decision Diagrams (BDD)

▶ Directed acyclic graph

▶ Internal nodes = Boolean variables

▶ Multi-terminal BDD: Leaf nodes = actions

▶ Reduced BDD: No redundant nodes

▶ Ordered BDD: Fixed variable order

Compact representation

Non-Boolean variables require bit-blasting

Direct human interpretation is difficult

x1

x2

x3

x2

x3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 6/17



Explainable Control Policy

Decision Trees

Easy to visualize and interpret

Not suitable for symbolic operations

Often redundant due to repeated subtrees

Binary Decision Diagrams

Direct human interpretation is difficult

Supports BDD-based algorithms

Non-Boolean variables require bit-blasting

Our goal : Find a representation that is:

Uses predicates over variables like DTs ⇝ explainable

Supports BDD-based algorithms

Avoids bit-blasting; stays at semantic predicate level

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 7/17



Explainable Control Policy

Decision Trees

Easy to visualize and interpret

Not suitable for symbolic operations

Often redundant due to repeated subtrees

Binary Decision Diagrams

Direct human interpretation is difficult

Supports BDD-based algorithms

Non-Boolean variables require bit-blasting

Our goal : Find a representation that is:

Uses predicates over variables like DTs ⇝ explainable

Supports BDD-based algorithms

Avoids bit-blasting; stays at semantic predicate level

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 7/17



Predicate Decision Diagrams (PDD)

▶ Extends BDDs with predicates

▶ Internal nodes = predicates (similar to DTs)

▶ Leaf nodes = actions

Merges isomorphic subgraphs, reducing redundancy

Compact representation (similar to BDDs)

Avoids bit-blasting: operate directly on predicates
over state variables

x ≥ 2

y ≤ 4

z ≤ 3

y ≤ 4

z ≤ 3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 8/17



Predicate Decision Diagrams (PDD)

▶ Extends BDDs with predicates

▶ Internal nodes = predicates (similar to DTs)

▶ Leaf nodes = actions

Merges isomorphic subgraphs, reducing redundancy

Compact representation (similar to BDDs)

Avoids bit-blasting: operate directly on predicates
over state variables

x ≥ 2

y ≤ 4

z ≤ 3

y ≤ 4

z ≤ 3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 8/17



Predicate Decision Diagrams (PDD)

▶ Extends BDDs with predicates

▶ Internal nodes = predicates (similar to DTs)

▶ Leaf nodes = actions

Merges isomorphic subgraphs, reducing redundancy

Compact representation (similar to BDDs)

Avoids bit-blasting: operate directly on predicates
over state variables

x ≥ 2

y ≤ 4

z ≤ 3

y ≤ 4

z ≤ 3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 8/17



Predicate Decision Diagrams (PDD)

▶ Extends BDDs with predicates

▶ Internal nodes = predicates (similar to DTs)

▶ Leaf nodes = actions

Merges isomorphic subgraphs, reducing redundancy

Compact representation (similar to BDDs)

Avoids bit-blasting: operate directly on predicates
over state variables

x ≥ 2

y ≤ 4

z ≤ 3

y ≤ 4

z ≤ 3

b a

True False

True False

True False
False

True

False
True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 8/17



How to Synthesize a PDD?

Controller Policy Table

Decision Tree

Predicate-based BDD

Size Reduction

Final Optimized PDD

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 9/17



How to Synthesize a PDD?

Controller Policy Table

Decision Tree

Predicate-based BDD

Size Reduction

Final Optimized PDD

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 9/17



How to Synthesize a PDD?

Controller Policy Table

Decision Tree

Predicate-based BDD

Size Reduction

Final Optimized PDD

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 9/17



How to Synthesize a PDD?

Controller Policy Table

Decision Tree

Predicate-based BDD

Size Reduction

Final Optimized PDD

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 9/17



How to Synthesize a PDD?

Controller Policy Table

Decision Tree

Predicate-based BDD

Size Reduction

Final Optimized PDD

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 9/17



How to Synthesize a PDD?

Controller Policy Table

Decision Tree

Predicate-based BDD

Size Reduction

Final Optimized PDD

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 9/17



Phase 1 : Learning a DT

Policy Table DT learning algorithms DT

x y actions

0 0 {a, b}
1 0 {b}
2 0 {b}
3 1 {a}

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

▶ Learn DT from the policy

▶ No early stopping : completely capture the policy

◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 10/17



Phase 1 : Learning a DT

Policy Table DT learning algorithms DT

x y actions

0 0 {a, b}
1 0 {b}
2 0 {b}
3 1 {a}

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

▶ Learn DT from the policy

▶ No early stopping : completely capture the policy

◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 10/17



Phase 1 : Learning a DT

Policy Table DT learning algorithms DT

x y actions

0 0 {a, b}
1 0 {b}
2 0 {b}
3 1 {a}

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

▶ Learn DT from the policy

▶ No early stopping : completely capture the policy

◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 10/17



Phase 1 : Learning a DT

Policy Table DT learning algorithms DT

x y actions

0 0 {a, b}
1 0 {b}
2 0 {b}
3 1 {a}

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

▶ Learn DT from the policy

▶ No early stopping : completely capture the policy

◦ ◦ ◦ ◦ ◦ ◦ ◦⊙ 10/17



Phase 2 : Compiling to a BDD with Predicate Labels

DT BDD Compilation PDD

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

x1 : x > 2

x2 : x > 0 x2 : x > 0

{a} {a, b} {b}

True False

True False False True

▶ Each predicate corresponds to a Boolean variable

▶ Reduce and merge to get canonical ROBDD

◦ ◦ ◦ ◦ ◦ ◦⊙ 11/17



Phase 2 : Compiling to a BDD with Predicate Labels

DT BDD Compilation PDD

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

x1 : x > 2

x2 : x > 0 x2 : x > 0

{a} {a, b} {b}

True False

True False False True

▶ Each predicate corresponds to a Boolean variable

▶ Reduce and merge to get canonical ROBDD

◦ ◦ ◦ ◦ ◦ ◦⊙ 11/17



Phase 2 : Compiling to a BDD with Predicate Labels

DT BDD Compilation PDD

x > 0

x > 2

{a} {b}

{a, b}

True False

True False

x1 : x > 2

x2 : x > 0 x2 : x > 0

{a} {a, b} {b}

True False

True False False True

▶ Each predicate corresponds to a Boolean variable

▶ Reduce and merge to get canonical ROBDD

◦ ◦ ◦ ◦ ◦ ◦⊙ 11/17



Phase 3 : Size Reduction by Consistency Checking

PDD Consistency Checking Small consistent
PDD

x > 2

x > 0 x > 0

{a} {a, b} {b}

True False

True False False True

▶ Inconsistent combination of predicates : (x > 2) ∧ ¬(x > 0)

▶ SMT-based simplification by finding and removing inconsistencies

◦ ◦ ◦ ◦ ◦⊙ 12/17



Phase 3 : Size Reduction by Consistency Checking

PDD Consistency Checking Small consistent
PDD

x > 2

x > 0 x > 0

{a} {a, b} {b}

True False

True False False True

▶ Inconsistent combination of predicates : (x > 2) ∧ ¬(x > 0)

▶ SMT-based simplification by finding and removing inconsistencies

◦ ◦ ◦ ◦ ◦⊙ 12/17



Phase 3 : Size Reduction by Consistency Checking

PDD Consistency Checking Small consistent
PDD

x > 2

x > 0 x > 0

{a} {a, b} {b}

True False

True False False True

▶ Inconsistent combination of predicates : (x > 2) ∧ ¬(x > 0)

▶ SMT-based simplification by finding and removing inconsistencies

◦ ◦ ◦ ◦ ◦⊙ 12/17



Phase 3 : Size Reduction by Consistency Checking

PDD Consistency Checking Small consistent
PDD

x > 2

x > 0 x > 0

{a} {a, b} {b}

True False

True False False True

True

▶ Inconsistent combination of predicates : (x > 2) ∧ ¬(x > 0)

▶ SMT-based simplification by finding and removing inconsistencies

◦ ◦ ◦ ◦ ◦⊙ 12/17



Phase 3 : Size Reduction by Consistency Checking

PDD Consistency Checking Small consistent
PDD

x > 2

x > 0

{a} {a, b} {b}

▶ Inconsistent combination of predicates : (x > 2) ∧ ¬(x > 0)

▶ SMT-based simplification by finding and removing inconsistencies

◦ ◦ ◦ ◦ ◦⊙ 12/17



Phase 3 (Continued) : Further Size Reduction

▶ Variable reordering

▶ Goal: Find a good predicate order to reduce size.

▶ Uses sifting algorithm.

▶ Care-set reduction

▶ Unreachable state ⇝ action does not matter

▶ Compresses the diagram by only preserving outputs for relevant states.

▶ Based on restrict operator.

◦ ◦ ◦ ◦⊙ 13/17



Phase 3 (Continued) : Further Size Reduction

▶ Variable reordering

▶ Goal: Find a good predicate order to reduce size.

▶ Uses sifting algorithm1.

▶ Care-set reduction

▶ Unreachable state ⇝ action does not matter

▶ Compresses the diagram by only preserving outputs for relevant states.

▶ Based on restrict operator.

1Rudell, R. “Dynamic variable ordering for ordered binary decision diagrams”, ICCAD’93.

◦ ◦ ◦ ◦⊙ 13/17



Phase 3 (Continued) : Further Size Reduction

▶ Variable reordering

▶ Goal: Find a good predicate order to reduce size.

▶ Uses sifting algorithm1.

▶ Care-set reduction

▶ Unreachable state ⇝ action does not matter

▶ Compresses the diagram by only preserving outputs for relevant states.

▶ Based on restrict operator2.

1Rudell, R. “Dynamic variable ordering for ordered binary decision diagrams”, ICCAD’93.
2Coudert, & Madre. “A unified framework for the formal verification of sequential circuits”, ICCAD’90.

◦ ◦ ◦ ◦⊙ 13/17



Experiments

Benchmarks:

▶ Cyber-physical systems :

▶ Benchmarks from SCOTS 3 and UppAal 4

▶ Markov Decision Processes:

▶ Quantitative Verification Benchmark Set (https://qcomp.org)

▶ Policy extracted using Storm5

Implemented in python: dtControl + BuDDy

3Rungger, M, and Zamani M. “SCOTS: A tool for the synthesis of symbolic controllers.” HSCC’16.
4David, A, et al. “Uppaal stratego.” TACAS’15.
5Dehnert, C, et al.. “A storm is coming: A modern probabilistic model checker.” CAV’17.

◦ ◦ ◦⊙ 14/17

https://qcomp.org


Results: Size Comparison

Table: Selected results: PDD vs. DT and bit-blasted BDD sizes

Controller States BDD DT PDD Comments

10rooms 26,244 1102 8648 344 PDD much smaller

helicopter 280,539 3348 3169 3158 PDD has comparable size to DTs

cartpole 271 197 126 126 DT = PDD

blocksworld.5 1,124 4043 617 796 PDD more compact than the BDD

pnueli-zuck.5 303,427 59,217 85,685 72,192 PDD more compact than the DT

▶ PDDs are on average 77% smaller than the bit-blasted BDDs

▶ PDDs are on average 16% smaller than the DTs

◦ ◦⊙ 15/17



Ablation Study

Figure: Effect of different steps in the pipeline in selected benchmarks

◦⊙ 16/17



Conclusion

Predicate Decision Diagrams

▶ Uses predicates over variables like DTs ⇝ explainable

▶ Supports BDD-based algorithms

▶ Avoids bit-blasting; stays at semantic predicate level

Synthesis Pipeline

1. Mining predicates using DT learning

2. Compiling to PDDs

3. Size reduction and optimization

Thank You

⊙ 17/17



Conclusion

Predicate Decision Diagrams

▶ Uses predicates over variables like DTs ⇝ explainable

▶ Supports BDD-based algorithms

▶ Avoids bit-blasting; stays at semantic predicate level

Synthesis Pipeline

1. Mining predicates using DT learning

2. Compiling to PDDs

3. Size reduction and optimization

Thank You

⊙ 17/17



Conclusion

Predicate Decision Diagrams

▶ Uses predicates over variables like DTs ⇝ explainable

▶ Supports BDD-based algorithms

▶ Avoids bit-blasting; stays at semantic predicate level

Synthesis Pipeline

1. Mining predicates using DT learning

2. Compiling to PDDs

3. Size reduction and optimization

Thank You
⊙ 17/17


