Safe Learning for Near-Optimal Scheduling
QEST'21

Damien Busatto-Gaston, Université libre de Bruxelles
Debraj Chakraborty, Université libre de Bruxelles
Shibashis Guha, Tata Institute of Fundamental Research
Guillermo A. Pérez, University of Antwerp
Jean-Francois Raskin, Université libre de Bruxelles

August 25, 2021

Scheduling hard and soft tasks

* Task system: Set of tasks partitioned into hard and soft tasks H and F.
* Each task generates instances called jobs.

* Tasks are preemptible: the scheduler can stall one job, and continue another job

Scheduling hard and soft tasks

* Task system: Set of tasks partitioned into hard and soft tasks H and F.
* Each task generates instances called jobs.

* Tasks are preemptible: the scheduler can stall one job, and continue another job

Tasks are tuples (C, D, A) such that
* D € N is the (relative) deadline of all jobs generated by the task
* C:{1,2,...,D} — [0,1] is a discrete probability distribution over possi-
ble job-computation times,
* A:{D,D+1,...} - [0,1] is a distribution over finitely many possible

inter-arrival times.

Scheduling hard and soft tasks

* Task system: Set of tasks partitioned into hard and soft tasks H and F.
* Each task generates instances called jobs.

* Tasks are preemptible: the scheduler can stall one job, and continue another job

Tasks are tuples (C, D, A) such that
* D € N is the (relative) deadline of all jobs generated by the task
* C:{1,2,...,D} — [0,1] is a discrete probability distribution over possi-
ble job-computation times,
* A:{D,D+1,...} - [0,1] is a distribution over finitely many possible

inter-arrival times.

* Hard tasks should never miss a deadline

¥ soft tasks have an associated cost ¢ € Q, c > 0.

Markov decision process

We model a task system as a Markov decision processes.

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= | O

* Play in the MDP: sp Total cost: 0

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

. 2
Play in the MDP: sy -5 s1 = 3 Total cost: 2

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

. 2 1
* Play in the MDP: sy SIS S| — S3 B, S5 —> Sg Total cost: 3

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

. 2 1
* Play in the MDP: sy SIS S| — S3 B, S5 — Sp... Total cost: 3

Markov decision process

We model a task system as a Markov decision processes.

1
1
0 2
1
2
. a 2 a3 1
* Play in the MDP: sy — s; = s3 —> s5 —> s5... Total cost: 3
n—1
* Mean cost: lim — Z cost;, where cost; is the cost at it step
n—oo n

i=0

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

¥ Strategy o : Pathg — Actions

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

* Strategy o : Pathg — Actions creates a Markov chain [[o]

Markov decision process

We model a task system as a Markov decision processes.

1
1
2

Ni= [O

* Strategy o : Pathg — Actions creates a Markov chain [[o]

* Expected mean cost of strategy o: E[MeanCosts]

MDP for scheduling problem

Consider the following task system with two tasks:

’ Task type ‘ C ‘ D ‘ A ‘ Cost ‘
Hard 1 2 |31 n/a
Soft [1:04,2:06] | 2 | 3 10

MDP for scheduling problem

Consider the following task system with two tasks:

l Task type l C l D l A l Cost ‘
Hard 1 2 |31 n/a
Soft [1:04,2:06] | 2 | 3 10

The states of the MDP contain the following information for each tasks:

* the remaining time D < D to deadline,

*# a distribution C : {1,2,..., ﬁ} — [0, 1] over the possible remaining com-
putation times,

* a distribution A: {D,D +1,...} — [0, 1] over the possible times before
next arrival of a job of that task.

MDP for scheduling problem

Consider the following task system with two tasks:

l Task type l C l D l A l Cost ‘
Hard 1 2 |31 n/a
Soft [1:04,2:06] | 2 | 3 10

The states of the MDP contain the following information for each tasks:

* the remaining time D < D to deadline,

*# a distribution C : {1,2,..., ﬁ} — [0, 1] over the possible remaining com-
putation times,

* a distribution A: {D,D +1,...} — [0, 1] over the possible times before
next arrival of a job of that task.

The initial state :

MDP for scheduling problem

The action of the MDP:
For Scheduler O:

* Either chooses an active task and gives it one CPU time unit for execution,
* Stays idle (¢g)
For Task Generator O:
* Stays idle (¢),
* Finish the current job (fin),
* Submit a new job (sub),

* Kill a soft task job and submit a new one (kill&sub)

MDP for scheduling problem

The action of the MDP:
For Scheduler O:

* Either chooses an active task and gives it one CPU time unit for execution,
* Stays idle (¢g)
For Task Generator O:
* Stays idle (¢),
* Finish the current job (fin),
* Submit a new job (sub),

* Kill a soft task job and submit a new one (kill&sub)

\.

We update the next states accordingly.

MDP for scheduling problem

¢ D A
— H 1 2 3
S |[1:42:6] 2 3

MDP for scheduling problem

¢ D A
— H 1 2 3
S |[1:42:6] 2 3

s hl 5

MDP for scheduling problem
¢

DA
2 3
23

— H
S | [1:4,2:.6]

s h

™

H 1
S | [0:.4,1:.6]

MDP for scheduling problem

¢ DA
— H i 2 3
S |[1:42:6] 2 3
s hl €
¢ DA
H 1 12
S |[0:4,1:6] 1 2
(e,fin) ~4 (g,€)|.6
¢ DA ¢ DA
Hi1 12 Hi1 12
S|0 1 2 S(112

£
2
=
o
S
s
80
=
=
=
5]
<
Q
(7]
£
L
o
@]
2

[

S|[:42:6 2 3

4 (e,€)

(e, fin)

|
Q[+
Q[

S|1 01

<]
Qlm
Qe

S0 1 2

[

A
0
0

(sub, kill&sub)
10

cost.
D
0
0

= <o
9] Q| = <o —
=] < © |Q=~ °
m AC1M ~ el -
o =3 © ITon %
[=11] T n

= N

=

g :

= o <o o

; < laf--

o Q|= o

fo Iwn

5

2

A
12
12

¢
1
[1:.4,2:.6]

H
S

[

<o o ~
Qla o o \b)
2
< s 3
& & = o
s < - >
=2 = b;; < |o o
S %
o < o o
Tw ” 28 |°
Wlo =
I wn

“n
= <o
Q T o -
2 © |Q=~ °
2 ol i il b
o © ITon %
[=11] T n
= N
E
3 € ol
o Q|= o
fo Iwn
5
=

A
12
12

A

1

-
o
©
a
S
=

¢
1
[1:.4,2:.6]

H
S
H
S

W

<] = N
Qla o - I
a
< s 3
& & = o
Cl < e >
=2 = b;; <|o o
S 4
o « o o
Tw ” 28 |°
WLio —
T n

«»

m T o

Q T o -

N © Qfrt o

m P F'OY -
©

o W ITwn %]

=11] T wn

< <

>

© —_

o S

= R AL

Q = Q| =

b Q

- RS-

S =

a1

12

[1:.4,2:.6]

S

[1:4,2:6] 0 1

[1:.4,2:6] 2 3
[1:42:6] 1 2

S]
S

€)

€

(

< |y
Q|
QL=

H
S|

10

(sub, kill&sub)

cost

2

1

1

4

)

e, fin

(

<y
Q=
Q[

£
2
=
o
S
s
80
=
=
=
5]
<
Q
(7]
£
L
o
@]
2

S|1 01

S0 1 2

MDP for scheduling problem

Objective

Find a stratgy for scheduler that
* avoids the state /\ (denoted some hard task missing deadline),

* minimizes the expected mean-cost

MDP for scheduling problem

Objective

Find a stratgy for scheduler that

* avoids the state /\ (denoted some hard task missing deadline),

* minimizes the expected mean-cost

* Prune the MDP to obtain safe region: from all vertices scheduler has a strategy
ensuring to visit only safe vertices

* Polynomial time algorithm in the size of the MDP

* Find the strategy that minimizes the expected mean-cost in the safe region
* Value iteration (STORM)

Model-based learning

Our settings
*# Deadlines and the domains of the distributions are known
*F Execution and inter-arrival time distributions are not known

* Need to sample to get “e-close” distributions

Model-based learning

Our settings
*# Deadlines and the domains of the distributions are known
*F Execution and inter-arrival time distributions are not known

* Need to sample to get “e-close” distributions
p ~€ q means Va,| p(a) — q(a) |< ¢

Model-based learning

Our settings

*# Deadlines and the domains of the distributions are known
*F Execution and inter-arrival time distributions are not known

* Need to sample to get “e-close” distributions

Guarantees about learning

* Probably approximately correct (PAC): for all €,y € (0,1), can compute
an e-close task system, with probability > 1 — ~.

* safely PAC learnable: PAC learnable, and can ensure safety for the hard
tasks while computing the approximation.

¥ (safely) efficiently PAC learnable : (safely) PAC learnable, and can com-
pute the approximation in PTIME(size of the task system, 1 %)

P

Model-based learning

How would we learn an unknown distribution p?

* Collect samples according to the distribution p
* Calculate the relative frequency:
number of times a is sampled
r(a) =

for all a € Dom(p)

total number of samples

* Ve, v € (0,1), if number of samples is "big enough”, r is e-close to p with
probability > 1 —

Model-based learning

How would we learn an unknown distribution p?

* Collect samples according to the distribution p
* Calculate the relative frequency:
number of times a is sampled
r(a) =

for all a € Dom(p)

total number of samples

* Ve, v € (0,1), if number of samples is "big enough”, r is e-close to p with
probability > 1 —

still polynomial in size of

the domain of p, % 4

Model-based learning

How would we learn an unknown distribution p?

* Collect samples according to the distribution p
* Calculate the relative frequency:
number of times a is sampled
r(a) =

for all a € Dom(p)

total number of samples

* Ve, v € (0,1), if number of samples is "big enough”, r is e-close to p with
probability > 1 —

;) Efficiently PAC-learnable

Model-based learning

Learning a task system with no hard tasks

for all tasks, repeat:

* Schedule the task when a job of this task is active till we collect enough
samples of inter-arrival and computation time.

* Approximate the inter-arrival time and computation time distribution.

Model-based learning

Learning a task system with no hard tasks

for all tasks, repeat:

* Schedule the task when a job of this task is active till we collect enough
samples of inter-arrival and computation time.

* Approximate the inter-arrival time and computation time distribution.

;) Efficiently PAC-learnable

del-based Learning

Distance between learnt and actual distributions

= Max norm exe Max norm arr

‘_3" ——Exe samples —Arr samples
k] 0.5 800
]
£ 4
s 0 600
Y C
3203
= 400
T o
22
v £ 0.2
T Hh

S 200
€ ° o1
o
c
- 0 0
© OO0 0000000000000 O0 OO0 OO
E OO0 0000000000000 O0O0O0 OO0

SRR IRABRTEIRREBBRR
Training steps

Learning distributions for a system with 6 soft tasks.

Model-based learning

Learning a task system with hard tasks

:(Have to follow a safe scheduling strategy to learn safely
:(May not observe enough samples if we follow a safe strategy

:(Need a stronger condition on the task system

Model-based learning

Learning a task system with hard tasks

:(Have to follow a safe scheduling strategy to learn safely
:(May not observe enough samples if we follow a safe strategy

:(Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks /, the safe region contains a state v; where
* a new job of task i enters the system

* there exists a strategy o; that safely schedules the hard tasks and under
o;, this new job is guaranteed to finish before deadline.

Model-based learning

Learning a task system with hard tasks

:(Have to follow a safe scheduling strategy to learn safely
:(May not observe enough samples if we follow a safe strategy

:(Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks /, the safe region contains a state v; where

* a new job of task i enters the system

* there exists a strategy o; that safely schedules the hard tasks and under
o;, this new job is guaranteed to finish before deadline.

:) Safely PAC-learnable

Model-based learning

Learning a task system with hard tasks

:(Have to follow a safe scheduling strategy to learn safely
:(May not observe enough samples if we follow a safe strategy

:(Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks /, the safe region contains a state v; where

* a new job of task i enters the system

* there exists a strategy o; that safely schedules the hard tasks and under
o;, this new job is guaranteed to finish before deadline.

:) Safely PAC-learnable
:(We cannot bound the time needed to get the next sample by a polynomial

:(Not efficiently PAC-learnable

Model-based learning

Learning a task system with hard tasks

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices Safe; in the safe region
such that

* from Safe;, there is a strategy, under which all hard tasks and the task 7
can be safely scheduled

* there is a safe strategy o; for the hard tasks such that from any state in
the safe region, Safe; is reachable within K € IN (polynomial in size of
the task system) steps using o;.

Model-based learning

Learning a task system with hard tasks

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices Safe; in the safe region
such that

* from Safe;, there is a strategy, under which all hard tasks and the task 7
can be safely scheduled

* there is a safe strategy o; for the hard tasks such that from any state in
the safe region, Safe; is reachable within K € IN (polynomial in size of
the task system) steps using o;.

:) Safely and efficiently PAC-learnable

Model-based learning

Example

Consider the following task system:

| Task id | Task type | C | D[A Cost |
1 Hard 1 2 | 4| n/a
2 Soft [1:7,2:?2] | 2 |3 10

We do not have a safe schedule that can ensure the soft task never misses a deadline.
¥ Safey = ¢
* ‘Good for efficient sampling’ condition does not hold

But at time 12n+6, n > 0:

* a new job by the soft task enters the system
* this new job can be scheduled and guaranteed to finish under a safe strategy

* ‘Good for sampling’ condition holds

Model-based learning

Using the learnt model

Given a task system T, 3,v € (0,1):
* Calculate appropriate €
* Learn a system TM, which is e-close to T with probability > 1 — ~

* Compute optimal safe scheduling strategy o in the MDP corresponding
to TM

* o is a safe strategy in T

* With probability > 1 —~, in T,

E [MeanCosts] — min, E[MeanCost.]| < 8

Model-based Learning

Value from Storm on
actual task system: 0.0678526

o
S
SN

0.08
0.06
0.04

arnt task systems

Observed value on

le

0.02

90 180 270 360 450 540 630 720 810 900
Training steps

Model-based learning for 1 hard, 2 soft tasks

Model-free learning

:(STORM can handle relatively smaller task systems (3-4 tasks ~ 106 states)

Model-free learning

:(STORM can handle relatively smaller task systems (3-4 tasks ~ 106 states)

Receding horizon framework

L]

Fix a horizon H
At each step, find the best action based on a unfolding tree of depth H
Use heuristic algorithms like Monte-carlo tree seach

Prune the tree by adding domain-knowledge using symbolic advice during
selection and simulation

Model-free learning

:(STORM can handle relatively smaller task systems (3-4 tasks ~ 106 states)
Receding horizon framework

* Fix a horizon H
* At each step, find the best action based on a unfolding tree of depth H
* Use heuristic algorithms like Monte-carlo tree seach

* Prune the tree by adding domain-knowledge using symbolic advice during
selection and simulation

Deep Q-learning

*# Use discount factor close to 1

* Use shielding to restrict actions during learning process so that only safe actions
can be used

Model-free learning

Strategies used for advice in MCTS and shielding in deep Q-learning
Earliest deadline first

* Always schedule the jobs by hard tasks with earliest deadline

* If no hard tasks are active, allow jobs by soft tasks

Model-free learning

Strategies used for advice in MCTS and shielding in deep Q-learning
Earliest deadline first

* Always schedule the jobs by hard tasks with earliest deadline

* If no hard tasks are active, allow jobs by soft tasks

;) easy to calculate, can be applied to larger systems

:(too restrictive

Model-free learning

Strategies used for advice in MCTS and shielding in deep Q-learning

Earliest deadline first

* Always schedule the jobs by hard tasks with earliest deadline

* If no hard tasks are active, allow jobs by soft tasks

;) easy to calculate, can be applied to larger systems

:(too restrictive

Most general safe scheduler

* Allow all safe edges from a scheduler vertex

Model-free learning

Strategies used for advice in MCTS and shielding in deep Q-learning

Earliest deadline first

* Always schedule the jobs by hard tasks with earliest deadline

* If no hard tasks are active, allow jobs by soft tasks

;) easy to calculate, can be applied to larger systems

:(too restrictive

Most general safe scheduler

* Allow all safe edges from a scheduler vertex

:) allows for maximal exploration

:(need to be precomputed (AbsSynth)

Experimental results

Task MDP | STORM MCTS | MCTS | MCTS | Deep-Q | Deep-Q | Deep-Q
size output unsafe | MGS EDF unsafe MGS EDF
45 10° 0.38 0.52 NA NA 0.56 NA NA
5S 100 TimeOut | 0 NA NA 0.13 NA NA
10S 1018 TimeOut | 0 NA NA 0.96 NA NA
1H, 2S 10* 0.07 0.67 0.14 0.28 0.24 0.11 0.22
1H, 3S 10° 0.28 1.13 0.45 0.49 o 0.47 0.47
2H, 1S 104 0 0.92 0 0.2 oo 0.02 0.3
2H, 5S 1010 TimeOut | 3.44 1.93 2.14 00 2.39 2.48
3H, 6S 1014 TimeOut | 4.17 2.88 2.97) 3.42 3.47
2H, 10S || 10% TimeOut | 0.3 0.03 0.03 00 1.42 1.6
4H, 125 || 10%° TimeOut | 2.1 1.2 1.3) 2.68 2.87

Comparison of MCTS and reinforcement learning.! 2

Lo refers to task systems missing deadline for hard tasks

2The values reported for both MCTS and Q-learning are obtained as an average cost over 600 steps.

Thank You!

