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Scheduling hard and soft tasks

I Task system: Set of tasks partitioned into hard and soft tasks H and F .

I Each task generates instances called jobs.

I Tasks are preemptible: the scheduler can stall one job, and continue another job

Tasks

Tasks are tuples (C ,D,A) such that

I D ∈ N is the (relative) deadline of all jobs generated by the task

I C : {1, 2, . . . ,D} → [0, 1] is a discrete probability distribution over possi-

ble job-computation times,

I A : {D,D + 1, . . . } → [0, 1] is a distribution over finitely many possible

inter-arrival times.

I Hard tasks should never miss a deadline

I soft tasks have an associated cost c ∈ Q, c ≥ 0.
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Markov decision process

We model a task system as a Markov decision processes.
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I Strategy σ : Path2 → Actions

creates a Markov chain Γ[σ]

I Expected mean cost of strategy σ: E [MeanCostσ]
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MDP for scheduling problem

Consider the following task system with two tasks:

Task type C D A Cost

Hard 1 2 3 n/a

Soft [1 : 0.4, 2 : 0.6] 2 3 10

States

The states of the MDP contain the following information for each tasks:

I the remaining time D̂ ≤ D to deadline,

I a distribution Ĉ : {1, 2, . . . , D̂} → [0, 1] over the possible remaining com-

putation times,

I a distribution Â : {D̂, D̂ + 1, . . . } → [0, 1] over the possible times before

next arrival of a job of that task.

The initial state :

Ĉ D̂ Â

H 1 2 3

S [1:.4,2:.6] 2 3
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MDP for scheduling problem

Actions

The action of the MDP:

For Scheduler 2:

I Either chooses an active task and gives it one CPU time unit for execution,

I Stays idle (ε)

For Task Generator #:

I Stays idle (ε),

I Finish the current job (fin),

I Submit a new job (sub),

I Kill a soft task job and submit a new one (kill&sub)

We update the next states accordingly.

5



MDP for scheduling problem

Actions

The action of the MDP:

For Scheduler 2:

I Either chooses an active task and gives it one CPU time unit for execution,

I Stays idle (ε)

For Task Generator #:

I Stays idle (ε),

I Finish the current job (fin),

I Submit a new job (sub),

I Kill a soft task job and submit a new one (kill&sub)

We update the next states accordingly.

5



MDP for scheduling problem
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H 1 1 2

S 1 1 2
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Ĉ D̂ Â
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H 1 1 2

S 0 1 2
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H 0 0 0

S 1 0 0

h

(fin, ε)

ε

(sub, kill&sub)

cost=10
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Ĉ D̂ Â
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H 1 1 2

S [1:.4,2:.6] 1 2

s h ε
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Ĉ D̂ Â
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H 1 1 2

S [1:.4,2:.6] 1 2

s h ε
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Ĉ D̂ Â
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MDP for scheduling problem

Objective

Find a stratgy for scheduler that

I avoids the state " (denoted some hard task missing deadline),

I minimizes the expected mean-cost

I Prune the MDP to obtain safe region: from all vertices scheduler has a strategy

ensuring to visit only safe vertices

I Polynomial time algorithm in the size of the MDP

I Find the strategy that minimizes the expected mean-cost in the safe region

I Value iteration (Storm)
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Model-based learning

Our settings

I Deadlines and the domains of the distributions are known

I Execution and inter-arrival time distributions are not known

I Need to sample to get “ε-close” distributions

p ∼ε q means ∀a, | p(a)− q(a) |≤ ε

Guarantees about learning

I Probably approximately correct (PAC): for all ε, γ ∈ (0, 1), can compute

an ε-close task system, with probability ≥ 1− γ.

I safely PAC learnable: PAC learnable, and can ensure safety for the hard

tasks while computing the approximation.

I (safely) efficiently PAC learnable : (safely) PAC learnable, and can com-

pute the approximation in PTIME
(
size of the task system, 1

ε
, 1

γ

)
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Model-based learning

How would we learn an unknown distribution p?

I Collect samples according to the distribution p

I Calculate the relative frequency:

r(a) =
number of times a is sampled

total number of samples
for all a ∈ Dom(p)

I ∀ε, γ ∈ (0, 1), if number of samples is “big enough”, r is ε-close to p with

probability ≥ 1− γ

still polynomial in size of

the domain of p, 1
ε

, 1
γ:) Efficiently PAC-learnable
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Model-based learning

Learning a task system with no hard tasks

for all tasks, repeat:

I Schedule the task when a job of this task is active till we collect enough

samples of inter-arrival and computation time.

I Approximate the inter-arrival time and computation time distribution.

:) Efficiently PAC-learnable
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Model-based Learning
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Model-based learning

Learning a task system with hard tasks

:( Have to follow a safe scheduling strategy to learn safely

:( May not observe enough samples if we follow a safe strategy

:( Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks i , the safe region contains a state vi where

I a new job of task i enters the system

I there exists a strategy σi that safely schedules the hard tasks and under

σi , this new job is guaranteed to finish before deadline.

:) Safely PAC-learnable

:( We cannot bound the time needed to get the next sample by a polynomial

:( Not efficiently PAC-learnable
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Model-based learning

Learning a task system with hard tasks

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices Safei in the safe region

such that

I from Safei , there is a strategy, under which all hard tasks and the task i

can be safely scheduled

I there is a safe strategy σi for the hard tasks such that from any state in

the safe region, Safei is reachable within K ∈ IN (polynomial in size of

the task system) steps using σi .

:) Safely and efficiently PAC-learnable
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Model-based learning

Example

Consider the following task system:

Task id Task type C D A Cost

1 Hard 1 2 4 n/a

2 Soft [1 : ?, 2 : ?] 2 3 10

We do not have a safe schedule that can ensure the soft task never misses a deadline.

I Safe2 = φ

I ‘Good for efficient sampling’ condition does not hold

But at time 12n + 6, n ≥ 0:

I a new job by the soft task enters the system

I this new job can be scheduled and guaranteed to finish under a safe strategy

I ‘Good for sampling’ condition holds
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Model-based learning

Using the learnt model

Given a task system Υ, β, γ ∈ (0, 1):

I Calculate appropriate ε

I Learn a system ΥM , which is ε-close to Υ with probability ≥ 1− γ

I Compute optimal safe scheduling strategy σ in the MDP corresponding

to ΥM

I σ is a safe strategy in Υ

I With probability ≥ 1− γ, in Υ, |E [MeanCostσ]−minτ E [MeanCostτ ]| ≤ β
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Model-based Learning

0

0.02

0.04

0.06

0.08

0.1

0.12

90 180 270 360 450 540 630 720 810 900

O
bs
er
ve
d	
va
lu
e	
on

	
le
ar
nt
	ta
sk
	s
ys
te
m
s

Training	steps

Value	from	Storm	on	
actual	task	system:	0.0678526

Model-based learning for 1 hard, 2 soft tasks
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Model-free learning

:( Storm can handle relatively smaller task systems (3-4 tasks ≈ 106 states)

Receding horizon framework

I Fix a horizon H

I At each step, find the best action based on a unfolding tree of depth H

I Use heuristic algorithms like Monte-carlo tree seach

I Prune the tree by adding domain-knowledge using symbolic advice during

selection and simulation

Deep Q-learning

I Use discount factor close to 1

I Use shielding to restrict actions during learning process so that only safe actions

can be used
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Model-free learning

Strategies used for advice in MCTS and shielding in deep Q-learning

Earliest deadline first

I Always schedule the jobs by hard tasks with earliest deadline

I If no hard tasks are active, allow jobs by soft tasks

:) easy to calculate, can be applied to larger systems

:( too restrictive

Most general safe scheduler

I Allow all safe edges from a scheduler vertex

:) allows for maximal exploration

:( need to be precomputed (AbsSynth)
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Experimental results

Task
MDP

size

Storm

output

MCTS

unsafe

MCTS

MGS

MCTS

EDF

Deep-Q

unsafe

Deep-Q

MGS

Deep-Q

EDF

4S 105 0.38 0.52 NA NA 0.56 NA NA

5S 106 TimeOut 0 NA NA 0.13 NA NA

10S 1018 TimeOut 0 NA NA 0.96 NA NA

1H, 2S 104 0.07 0.67 0.14 0.28 0.24 0.11 0.22

1H, 3S 105 0.28 1.13 0.45 0.49 ∞ 0.47 0.47

2H, 1S 104 0 0.92 0 0.2 ∞ 0.02 0.3

2H, 5S 1010 TimeOut 3.44 1.93 2.14 ∞ 2.39 2.48

3H, 6S 1014 TimeOut 4.17 2.88 2.97 ∞ 3.42 3.47

2H, 10S 1022 TimeOut 0.3 0.03 0.03 ∞ 1.42 1.6

4H, 12S 1030 TimeOut 2.1 1.2 1.3 ∞ 2.68 2.87

Comparison of MCTS and reinforcement learning.1 2

1∞ refers to task systems missing deadline for hard tasks
2The values reported for both MCTS and Q-learning are obtained as an average cost over 600 steps.
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Thank You!
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