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* Tasks are preemptible: the scheduler can stall one job, and continue another job

Tasks are tuples (C, D, A) such that
* D € N is the (relative) deadline of all jobs generated by the task
* C:{1,2,...,D} — [0,1] is a discrete probability distribution over possi-
ble job-computation times,
* A:{D,D+1,...} - [0,1] is a distribution over finitely many possible

inter-arrival times.

* Hard tasks should never miss a deadline

¥ soft tasks have an associated cost ¢ € Q, c > 0.
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Markov decision process

We model a task system as a Markov decision processes.
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* Play in the MDP: sy — s; = s3 —> s5 —> s5... Total cost: 3
n—1
* Mean cost: lim — Z cost;, where cost; is the cost at it step
n—oo n

i=0
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We model a task system as a Markov decision processes.
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* Strategy o : Pathg — Actions creates a Markov chain [[o]

* Expected mean cost of strategy o: E[MeanCosts]
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The states of the MDP contain the following information for each tasks:

* the remaining time D < D to deadline,

*# a distribution C : {1,2,..., ﬁ} — [0, 1] over the possible remaining com-
putation times,

* a distribution A: {D,D +1,...} — [0, 1] over the possible times before
next arrival of a job of that task.

The initial state :
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* Either chooses an active task and gives it one CPU time unit for execution,
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For Task Generator O:
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* Finish the current job (fin),
* Submit a new job (sub),

* Kill a soft task job and submit a new one (kill&sub)
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The action of the MDP:
For Scheduler O:

* Either chooses an active task and gives it one CPU time unit for execution,
* Stays idle (¢g)
For Task Generator O:
* Stays idle (¢),
* Finish the current job (fin),
* Submit a new job (sub),

* Kill a soft task job and submit a new one (kill&sub)

\.

We update the next states accordingly.
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MDP for scheduling problem

Objective

Find a stratgy for scheduler that

* avoids the state /\ (denoted some hard task missing deadline),

* minimizes the expected mean-cost

* Prune the MDP to obtain safe region: from all vertices scheduler has a strategy
ensuring to visit only safe vertices

* Polynomial time algorithm in the size of the MDP

* Find the strategy that minimizes the expected mean-cost in the safe region
* Value iteration (STORM)
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Model-based learning

Our settings

*# Deadlines and the domains of the distributions are known
*F Execution and inter-arrival time distributions are not known

* Need to sample to get “e-close” distributions

Guarantees about learning

* Probably approximately correct (PAC): for all €,y € (0,1), can compute
an e-close task system, with probability > 1 — ~.

* safely PAC learnable: PAC learnable, and can ensure safety for the hard
tasks while computing the approximation.

¥ (safely) efficiently PAC learnable : (safely) PAC learnable, and can com-
pute the approximation in PTIME(size of the task system, 1 %)

P
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How would we learn an unknown distribution p?

* Collect samples according to the distribution p
* Calculate the relative frequency:
number of times a is sampled
r(a) =

for all a € Dom(p)

total number of samples

* Ve, v € (0,1), if number of samples is "big enough”, r is e-close to p with
probability > 1 —
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Learning a task system with no hard tasks

for all tasks, repeat:

* Schedule the task when a job of this task is active till we collect enough
samples of inter-arrival and computation time.

* Approximate the inter-arrival time and computation time distribution.
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del-based Learning

Distance between learnt and actual distributions

= Max norm exe Max norm arr
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Learning distributions for a system with 6 soft tasks.
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Learning a task system with hard tasks

:( Have to follow a safe scheduling strategy to learn safely
:( May not observe enough samples if we follow a safe strategy

:( Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks /, the safe region contains a state v; where

* a new job of task i enters the system

* there exists a strategy o; that safely schedules the hard tasks and under
o;, this new job is guaranteed to finish before deadline.

:) Safely PAC-learnable
:( We cannot bound the time needed to get the next sample by a polynomial

:( Not efficiently PAC-learnable
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Learning a task system with hard tasks

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices Safe; in the safe region
such that

* from Safe;, there is a strategy, under which all hard tasks and the task 7
can be safely scheduled

* there is a safe strategy o; for the hard tasks such that from any state in
the safe region, Safe; is reachable within K € IN (polynomial in size of
the task system) steps using o;.
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Learning a task system with hard tasks

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices Safe; in the safe region
such that

* from Safe;, there is a strategy, under which all hard tasks and the task 7
can be safely scheduled

* there is a safe strategy o; for the hard tasks such that from any state in
the safe region, Safe; is reachable within K € IN (polynomial in size of
the task system) steps using o;.

:) Safely and efficiently PAC-learnable



Model-based learning

Example

Consider the following task system:

| Task id | Task type | C | D[ A Cost |
1 Hard 1 2 | 4| n/a
2 Soft [1:7,2:?2] | 2 |3 10

We do not have a safe schedule that can ensure the soft task never misses a deadline.
¥ Safey = ¢
* ‘Good for efficient sampling’ condition does not hold

But at time 12n+6, n > 0:

* a new job by the soft task enters the system
* this new job can be scheduled and guaranteed to finish under a safe strategy

* ‘Good for sampling’ condition holds



Model-based learning

Using the learnt model

Given a task system T, 3,v € (0,1):
* Calculate appropriate €
* Learn a system TM, which is e-close to T with probability > 1 — ~

* Compute optimal safe scheduling strategy o in the MDP corresponding
to TM

* o is a safe strategy in T

* With probability > 1 —~, in T,

E [MeanCosts] — min, E[MeanCost.]| < 8



Model-based Learning

Value from Storm on
actual task system: 0.0678526
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Model-based learning for 1 hard, 2 soft tasks
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Prune the tree by adding domain-knowledge using symbolic advice during
selection and simulation



Model-free learning

:( STORM can handle relatively smaller task systems (3-4 tasks ~ 106 states)
Receding horizon framework

* Fix a horizon H
* At each step, find the best action based on a unfolding tree of depth H
* Use heuristic algorithms like Monte-carlo tree seach

* Prune the tree by adding domain-knowledge using symbolic advice during
selection and simulation

Deep Q-learning

*# Use discount factor close to 1

* Use shielding to restrict actions during learning process so that only safe actions
can be used
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Earliest deadline first

* Always schedule the jobs by hard tasks with earliest deadline

* If no hard tasks are active, allow jobs by soft tasks
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Model-free learning

Strategies used for advice in MCTS and shielding in deep Q-learning

Earliest deadline first

* Always schedule the jobs by hard tasks with earliest deadline

* If no hard tasks are active, allow jobs by soft tasks

;) easy to calculate, can be applied to larger systems

:( too restrictive

Most general safe scheduler

* Allow all safe edges from a scheduler vertex

:) allows for maximal exploration

:( need to be precomputed (AbsSynth)



Experimental results

Task MDP | STORM MCTS | MCTS | MCTS | Deep-Q | Deep-Q | Deep-Q
size output unsafe | MGS EDF unsafe MGS EDF
45 10° 0.38 0.52 NA NA 0.56 NA NA
5S 100 TimeOut | 0 NA NA 0.13 NA NA
10S 1018 TimeOut | 0 NA NA 0.96 NA NA
1H, 2S 10* 0.07 0.67 0.14 0.28 0.24 0.11 0.22
1H, 3S 10° 0.28 1.13 0.45 0.49 o 0.47 0.47
2H, 1S 104 0 0.92 0 0.2 oo 0.02 0.3
2H, 5S 1010 TimeOut | 3.44 1.93 2.14 00 2.39 2.48
3H, 6S 1014 TimeOut | 4.17 2.88 2.97 ) 3.42 3.47
2H, 10S || 10% TimeOut | 0.3 0.03 0.03 00 1.42 1.6
4H, 125 || 10%° TimeOut | 2.1 1.2 1.3 ) 2.68 2.87

Comparison of MCTS and reinforcement learning.! 2

Lo refers to task systems missing deadline for hard tasks

2The values reported for both MCTS and Q-learning are obtained as an average cost over 600 steps.
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