Safe Learning for Near-Optimal Scheduling QEST'21

Damien Busatto-Gaston, Université libre de Bruxelles Debraj Chakraborty, Université libre de Bruxelles Shibashis Guha, Tata Institute of Fundamental Research Guillermo A. Pérez, University of Antwerp Jean-François Raskin, Université libre de Bruxelles

August 25, 2021

Scheduling hard and soft tasks

- * Task system: Set of tasks partitioned into hard and soft tasks H and F.
- Each task generates instances called jobs.
- * Tasks are preemptible: the scheduler can stall one job, and continue another job

Scheduling hard and soft tasks

- ✤ Task system: Set of tasks partitioned into hard and soft tasks H and F.
- Each task generates instances called jobs.
- * Tasks are preemptible: the scheduler can stall one job, and continue another job

Tasks

Tasks are tuples (C, D, A) such that

- ★ $D \in \mathbb{N}$ is the (relative) deadline of all jobs generated by the task
- * $C: \{1, 2, \dots, D\} \rightarrow [0, 1]$ is a discrete probability distribution over possible job-computation times,
- * $A : \{D, D+1, \ldots\} \rightarrow [0, 1]$ is a distribution over finitely many possible inter-arrival times.

Scheduling hard and soft tasks

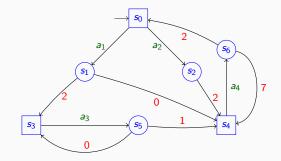
- ✤ Task system: Set of tasks partitioned into hard and soft tasks H and F.
- Each task generates instances called jobs.
- * Tasks are preemptible: the scheduler can stall one job, and continue another job

Tasks

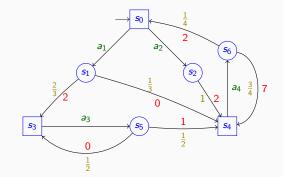
Tasks are tuples (C, D, A) such that

- ★ $D \in \mathbb{N}$ is the (relative) deadline of all jobs generated by the task
- * $C: \{1, 2, \dots, D\} \rightarrow [0, 1]$ is a discrete probability distribution over possible job-computation times,
- * $A : \{D, D+1, \ldots\} \rightarrow [0, 1]$ is a distribution over finitely many possible inter-arrival times.
- Hard tasks should never miss a deadline
- ★ soft tasks have an associated cost $c \in \mathbb{Q}, c \ge 0$.

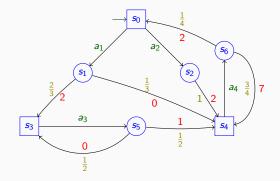
We model a task system as a Markov decision processes.



We model a task system as a Markov decision processes.



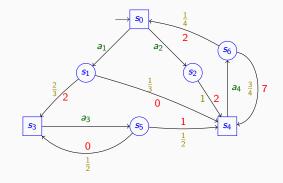
We model a task system as a Markov decision processes.



✤ Play in the MDP: s₀

Total cost: 0

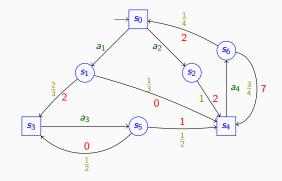
We model a task system as a Markov decision processes.



▶ Play in the MDP: $s_0 \xrightarrow{a_1} s_1 \xrightarrow{2} s_3$

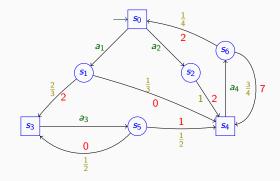
Total cost: 2

We model a task system as a Markov decision processes.



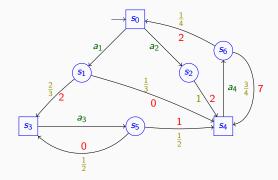
• Play in the MDP: $s_0 \xrightarrow{a_1} s_1 \xrightarrow{2} s_3 \xrightarrow{a_3} s_5 \xrightarrow{1} s_4$ Total cost: 3

We model a task system as a Markov decision processes.



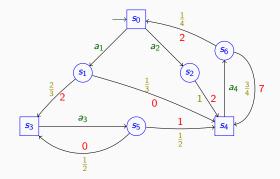
◆ Play in the MDP: $s_0 \xrightarrow{a_1} s_1 \xrightarrow{2} s_3 \xrightarrow{a_3} s_5 \xrightarrow{1} s_4 \dots$ Total cost: 3

We model a task system as a Markov decision processes.



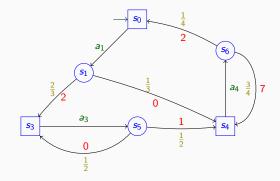
* Play in the MDP: s₀ ^{a₁}→ s₁ ²→ s₃ ^{a₃}→ s₅ ¹→ s₄... Total cost: 3
 * Mean cost: lim_{n→∞} ¹/_n ∑_{i=0}ⁿ⁻¹ cost_i, where cost_i is the cost at *ith* step

We model a task system as a Markov decision processes.



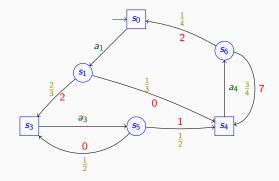
* Strategy σ : $Path_{\Box} \rightarrow Actions$

We model a task system as a Markov decision processes.



* Strategy σ : *Path*^{\Box} \rightarrow *Actions* creates a Markov chain $\Gamma[\sigma]$

We model a task system as a Markov decision processes.



★ Strategy σ : Path_□ → Actions creates a Markov chain $\Gamma[\sigma]$

***** Expected mean cost of strategy σ : $\mathbb{E}[MeanCost_{\sigma}]$

Consider the following task system with two tasks:

Task type	С	D	А	Cost
Hard	1	2	3	n/a
Soft	[1:0.4, 2:0.6]	2	3	10

Consider the following task system with two tasks:

Task type	С	D	А	Cost
Hard	1	2	3	n/a
Soft	[1:0.4, 2:0.6]	2	3	10

States

The states of the MDP contain the following information for each tasks:

- * the remaining time $\hat{D} \leq D$ to deadline,
- * a distribution $\hat{C}: \{1, 2, \dots, \hat{D}\} \to [0, 1]$ over the possible remaining computation times,
- * a distribution $\hat{A} : {\hat{D}, \hat{D} + 1, ...} \rightarrow [0, 1]$ over the possible times before next arrival of a job of that task.

Consider the following task system with two tasks:

Task type	С	D	А	Cost
Hard	1	2	3	n/a
Soft	[1:0.4, 2:0.6]	2	3	10

States

The states of the MDP contain the following information for each tasks:

- * the remaining time $\hat{D} \leq D$ to deadline,
- * a distribution $\hat{C}:\{1,2,\ldots,\hat{D}\}\to [0,1]$ over the possible remaining computation times,
- * a distribution $\hat{A} : {\hat{D}, \hat{D} + 1, ...} \rightarrow [0, 1]$ over the possible times before next arrival of a job of that task.

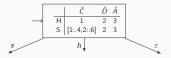
The initial state :

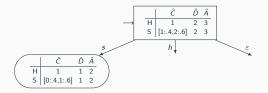
Actions The action of the MDP: For Scheduler □: Either chooses an active task and gives it one CPU time unit for execution, * Stays idle (ε) For Task Generator O: * Stays idle (ε), Finish the current job (fin), Submit a new job (sub), Kill a soft task job and submit a new one (kill&sub)

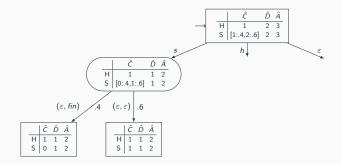
Actions
The action of the MDP: For Scheduler □:
* Either chooses an active task and gives it one CPU time unit for execution,
* Stays idle (ε)
For Task Generator \bigcirc :
* Stays idle (ε),
 Finish the current job (fin),
* Submit a new job (sub),
* Kill a soft task job and submit a new one (kill⊂)

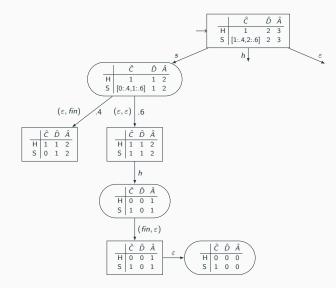
We update the next states accordingly.

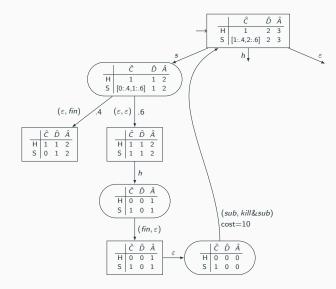
		Ĉ	Ô	Â	
\rightarrow	Н	1	2	3	
	S	[1:.4,2:.6]	2	3	

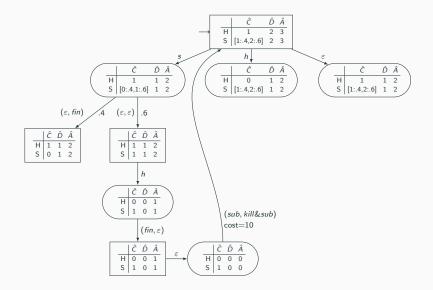


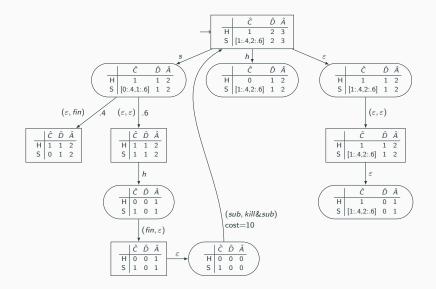


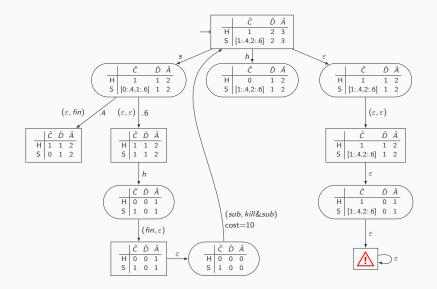












Objective

Find a stratgy for scheduler that

- ★ avoids the state <u>A</u> (denoted some hard task missing deadline),
- minimizes the expected mean-cost

Objective

Find a stratgy for scheduler that

- ★ avoids the state <u>A</u> (denoted some hard task missing deadline),
- minimizes the expected mean-cost
- Prune the MDP to obtain safe region: from all vertices scheduler has a strategy ensuring to visit only safe vertices
 - * Polynomial time algorithm in the size of the MDP
- * Find the strategy that minimizes the expected mean-cost in the safe region
 - Value iteration (STORM)

Our settings

- * Deadlines and the domains of the distributions are known
- * Execution and inter-arrival time distributions are not known

Our settings

- * Deadlines and the domains of the distributions are known
- * Execution and inter-arrival time distributions are not known

_____ $p\sim^{\epsilon} q$ means $orall a, \mid p(a)-q(a)\mid\leq \epsilon$

Our settings

- Deadlines and the domains of the distributions are known
- * Execution and inter-arrival time distributions are not known
- ✤ Need to sample to get "e-close" distributions

Guarantees about learning

- Probably approximately correct (PAC): for all ε, γ ∈ (0, 1), can compute an ε-close task system, with probability ≥ 1 − γ.
- safely PAC learnable: PAC learnable, and can ensure safety for the hard tasks while computing the approximation.
- * (safely) efficiently PAC learnable : (safely) PAC learnable, and can compute the approximation in *PTIME* (size of the task system, $\frac{1}{\epsilon}$, $\frac{1}{2}$)

How would we learn an unknown distribution p?

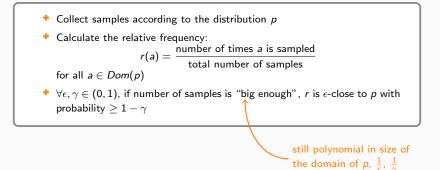
- * Collect samples according to the distribution p
- Calculate the relative frequency:

 $r(a) = rac{\text{number of times } a \text{ is sampled}}{\text{total number of samples}}$

for all $a \in Dom(p)$

★ ∀ε, γ ∈ (0, 1), if number of samples is "big enough", r is ε-close to p with probability ≥ 1 − γ

How would we learn an unknown distribution p?



How would we learn an unknown distribution p?

- Collect samples according to the distribution p
- Calculate the relative frequency:

 $r(a) = \frac{\text{number of times } a \text{ is sampled}}{\text{total number of samples}}$

for all $a \in Dom(p)$

★ ∀ε, γ ∈ (0, 1), if number of samples is "big enough", r is ε-close to p with probability ≥ 1 − γ

:) Efficiently PAC-learnable

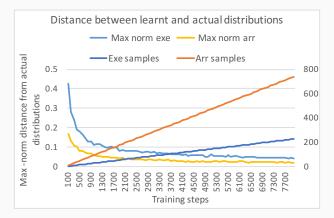
for all tasks, repeat:

- Schedule the task when a job of this task is active till we collect enough samples of inter-arrival and computation time.
- * Approximate the inter-arrival time and computation time distribution.

for all tasks, repeat:

- Schedule the task when a job of this task is active till we collect enough samples of inter-arrival and computation time.
- * Approximate the inter-arrival time and computation time distribution.

:) Efficiently PAC-learnable



Learning distributions for a system with 6 soft tasks.

- :(Have to follow a safe scheduling strategy to learn safely
- :(May not observe enough samples if we follow a safe strategy
- :(Need a stronger condition on the task system

- :(Have to follow a safe scheduling strategy to learn safely
- :(May not observe enough samples if we follow a safe strategy
- :(Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks *i*, the safe region contains a state v_i where

- * a new job of task *i* enters the system
- * there exists a strategy σ_i that safely schedules the hard tasks and under σ_i , this new job is guaranteed to finish before deadline.

- :(Have to follow a safe scheduling strategy to learn safely
- :(May not observe enough samples if we follow a safe strategy
- :(Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks i, the safe region contains a state v_i where

- * a new job of task *i* enters the system
- * there exists a strategy σ_i that safely schedules the hard tasks and under σ_i , this new job is guaranteed to finish before deadline.

:) Safely PAC-learnable

- :(Have to follow a safe scheduling strategy to learn safely
- :(May not observe enough samples if we follow a safe strategy
- :(Need a stronger condition on the task system

Condition: good for sampling

For all soft tasks *i*, the safe region contains a state v_i where

- * a new job of task *i* enters the system
- * there exists a strategy σ_i that safely schedules the hard tasks and under σ_i , this new job is guaranteed to finish before deadline.
- :) Safely PAC-learnable
- :(We cannot bound the time needed to get the next sample by a polynomial
- :(Not efficiently PAC-learnable

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices $Safe_i$ in the safe region such that

- from Safe_i, there is a strategy, under which all hard tasks and the task i can be safely scheduled
- * there is a safe strategy σ_i for the hard tasks such that from any state in the safe region, *Safe_i* is reachable within $K \in \mathbb{N}$ (polynomial in size of the task system) steps using σ_i .

More restrictive condition: good for efficient sampling

For all soft tasks, there is a set of scheduler vertices $Safe_i$ in the safe region such that

- from Safe_i, there is a strategy, under which all hard tasks and the task i can be safely scheduled
- * there is a safe strategy σ_i for the hard tasks such that from any state in the safe region, *Safe_i* is reachable within $K \in \mathbb{N}$ (polynomial in size of the task system) steps using σ_i .

:) Safely and efficiently PAC-learnable

Example

Consider the following task system:

Task id	Task type	С	D	А	Cost
1	Hard	1	2	4	n/a
2	Soft	[1: ? ,2: ?]	2	3	10

We do not have a safe schedule that can ensure the soft task never misses a deadline.

- Safe₂ = ϕ
- * 'Good for efficient sampling' condition does not hold

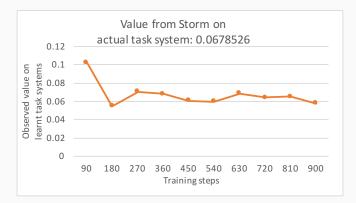
But at time 12n + 6, $n \ge 0$:

- * a new job by the soft task enters the system
- * this new job can be scheduled and guaranteed to finish under a safe strategy
- 'Good for sampling' condition holds

Using the learnt model

Given a task system Υ , $\beta, \gamma \in (0, 1)$:

- * Calculate appropriate ϵ
- * Learn a system Υ^M , which is ϵ -close to Υ with probability $\geq 1 \gamma$
- * Compute optimal safe scheduling strategy σ in the MDP corresponding to Υ^{M}
- * σ is a safe strategy in Υ
- * With probability $\geq 1 \gamma$, in Υ , $|\mathbb{E}[MeanCost_{\sigma}] \min_{\tau} \mathbb{E}[MeanCost_{\tau}]| \leq \beta$



Model-based learning for 1 hard, 2 soft tasks

:($_{\rm STORM}$ can handle relatively smaller task systems (3-4 tasks $\approx 10^6$ states)

:($_{\rm STORM}$ can handle relatively smaller task systems (3-4 tasks $\approx 10^6$ states)

Receding horizon framework

- ✤ Fix a horizon H
- * At each step, find the best action based on a unfolding tree of depth H
- ✤ Use heuristic algorithms like Monte-carlo tree seach
- Prune the tree by adding domain-knowledge using symbolic advice during selection and simulation

:($_{\rm STORM}$ can handle relatively smaller task systems (3-4 tasks $\approx 10^6$ states)

Receding horizon framework

- ✤ Fix a horizon H
- * At each step, find the best action based on a unfolding tree of depth H
- ✤ Use heuristic algorithms like Monte-carlo tree seach
- Prune the tree by adding domain-knowledge using symbolic advice during selection and simulation

Deep Q-learning

- ✤ Use discount factor close to 1
- Use shielding to restrict actions during learning process so that only safe actions can be used

Earliest deadline first

- * Always schedule the jobs by hard tasks with earliest deadline
- * If no hard tasks are active, allow jobs by soft tasks

Earliest deadline first

- * Always schedule the jobs by hard tasks with earliest deadline
- * If no hard tasks are active, allow jobs by soft tasks
- :) easy to calculate, can be applied to larger systems
- :(too restrictive

Earliest deadline first

- * Always schedule the jobs by hard tasks with earliest deadline
- * If no hard tasks are active, allow jobs by soft tasks
- :) easy to calculate, can be applied to larger systems
- :(too restrictive

Most general safe scheduler

Allow all safe edges from a scheduler vertex

Earliest deadline first

- * Always schedule the jobs by hard tasks with earliest deadline
- * If no hard tasks are active, allow jobs by soft tasks
- :) easy to calculate, can be applied to larger systems
- :(too restrictive

Most general safe scheduler

- Allow all safe edges from a scheduler vertex
- :) allows for maximal exploration
- :(need to be precomputed (AbsSynth)

Task	MDP	Storm	MCTS	MCTS	MCTS	Deep-Q	Deep-Q	Deep-Q
	size	output	unsafe	MGS	EDF	unsafe	MGS	EDF
4S	105	0.38	0.52	NA	NA	0.56	NA	NA
5S	106	TimeOut	0	NA	NA	0.13	NA	NA
10S	1018	TimeOut	0	NA	NA	0.96	NA	NA
1H, 2S	104	0.07	0.67	0.14	0.28	0.24	0.11	0.22
1H, 3S	105	0.28	1.13	0.45	0.49	∞	0.47	0.47
2H, 1S	104	0	0.92	0	0.2	∞	0.02	0.3
2H, 5S	1010	TimeOut	3.44	1.93	2.14	∞	2.39	2.48
3H, 6S	1014	TimeOut	4.17	2.88	2.97	∞	3.42	3.47
2H, 10S	1022	TimeOut	0.3	0.03	0.03	∞	1.42	1.6
4H, 12S	10 ³⁰	TimeOut	2.1	1.2	1.3	∞	2.68	2.87

Comparison of MCTS and reinforcement learning. $^{1\ 2}$

 $^{^1\}infty$ refers to task systems missing deadline for hard tasks

²The values reported for both MCTS and Q-learning are obtained as an average cost over 600 steps.

Thank You!