
Monte Carlo Tree Search with Advice

Thesis presented by Debraj CHAKRABORTY
in fulfilment of the requirements of the PhD Degree in Computer Science
academic year 2022-2023

Supervisor : Professor Jean-François Raskin
Formal Methods and Verification

Département d’informatique

Thesis jury :

Emmanuel FILIOT, (Université Libre de Bruxelles, chair)
Gilles GEERAERTS, (Université Libre de Bruxelles)
Jan KŘETÍNSKÝ, (Technical University Munich)
Kim G. LARSEN, (Aalborg University)

Acknowledgements

I would like to thank my supervisor Jean-François for his guidance, patience and
encouragement throughout the whole journey. In these four years, I have learnt a lot from
him: starting from approaching a problem to formalizing that approach and presenting it.
I am fortunate to have him as my advisor. A big part of the work in this thesis would not
be possible without the help of Damien. I am also grateful to work with Guillermo and
Shibashis during the course of the PhD.

I would also like to thank the members of the jury, Emmanuel Filiot, Gilles Geeraerts,
Jan Křetínský and Kim G. Larsen, who agreed to review this thesis and provided valuable
feedbacks.

This work is partially supported by the ARC project Non-Zero Sum Game Graphs: Ap-
plications to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), and by the
EOS project Verifying Learning Artificial Intelligence Systems (F.R.S.-FNRS and FWO).
Computational resources used for the experiments have been provided by CÉCI, funded by
F.R.S.-FNRS and by the Walloon Region.

I thank the people who had been in the formal methods group at ULB. Thanks to Raphaël,
Nicolas, Ismaël, Shibashis, Léo, Marie, Damien, Sarah, Edwin, Ayrat, Mrudula, Léonard,
Anirban, Sayan and others not only for providing a welcoming work environment but also
for all the board game evenings, food, fries and drinks we had together. I also want to thank
my friends from CMI: Suman, Anirban, Ritam, Sougata, Prantar, Nisarg, Siddarth and
others for having occasional chats, online board games and sharing their OTT streaming
service accounts with me.

I would also like to take the opportunity to thankmy teachers from school and the professors
from CMI for guiding me in the path of learning. In particular, I owe my interest in
formal verification to Srivathsan for his instructive teaching and guidance. Finally and
most importantly, I am forever grateful to my parents and my uncles for their affection,
continuous support and encouragement.

েদবরাজ চকৰ্বত্তর্ী

Abstract

Markov decision processes (MDPs) are mathematical frameworks to model sequential
decision-making. They are discrete-time stochastic models where the controller chooses
actions based on the current state and then receives a reward and the state of the MDP
is updated based on a probabilistic transition function. A strategy is a mapping from the
execution of the system so far to the decisions available for the controller that tells how the
controller should behave in the system.

In this thesis, we study how to efficiently combine techniques from formal methods and
learning for online computation of a strategy that aims at optimizing the expected long
term reward in large systems modelled as MDPs. This strategy is computed with receding
horizon and using Monte Carlo tree search (MCTS). We augment the MCTS algorithm
with the notion of advice which guides the search in the relevant part of the tree using exact
methods. Such an advice can be symbolically written as a logical formula and computed
on-the-fly using model checking tools. We show that the classical theoretical guarantees of
Monte Carlo tree search are still maintained after this augmentation.

To lower the latency ofMCTS algorithms with advice, we propose to replace advice coming
from exact algorithms with an artificial neural network (NN). For this purpose, we imple-
mented an expert imitation framework to train the neural network in order to replace the
expert advice by a lower-latency neural advice. This neural network can also be used as a
full-fledged strategy when minimal latency is required. This imitation framework relies on
a data generation algorithm which leverages formal methods in order to obtain noise-free
data. We use statistical model checking to detect when additional samples are needed and
generate these samples on demand when the performance of the learnt neural network does
not match the quality of the strategy computed offline.

To demonstrate the practical interest of our techniques, we implemented the frameworks on
different systems modelled as MDPs: in the game of Pac-Man and Frozen Lake and also
for safe and optimal scheduling of jobs in a task system.

Contents

1 Introduction 1
1.1 Background . 2
1.2 Contributions . 6
1.3 Related works . 7
1.4 Organization of this thesis . 8

2 Preliminaries 9
2.1 Transition systems and games . 9
2.2 Probability . 12
2.3 Probabilistic systems . 15
2.4 Distance-optimal strategy for reachability 29
2.5 Multi-armed bandit problem . 35
2.6 Monte Carlo tree search . 38
2.7 Task systems . 43
2.8 Artificial neural networks . 48

3 Formal methods in decision-time planning 51
3.1 Receding horizon control . 51
3.2 Bisimulation in MDPs . 54
3.3 Pruning . 58

4 Advice 61
4.1 Symbolic advice . 62
4.2 Sampling according to a symbolic advice 65
4.3 On-the-fly computation of an enforceable advice 67

5 Monte Carlo tree search with advice 70
5.1 Generalized Monte Carlo tree search . 70
5.2 MCTS with symbolic advice . 77

6 Applications of MCTS with advice 80
6.1 Description of the framework . 80
6.2 Application 1: Pacman . 82
6.3 Application 2 : safe and optimal scheduling of tasks 84

CONTENTS

7 Imitation learning 98
7.1 Training a neural network . 99
7.2 Dataset aggregration : Formally sharp DAgger 100
7.3 Evaluating a learnt strategy . 101

8 Applications of imitation learning 104
8.1 Apllication 1: Frozen Lake . 104
8.2 Application 2: Pac-Man . 106

9 Conclusion 110
9.1 Future works . 111

v

Chapter 1

Introduction

A decision-making procedure is a systemwith the following sub-elements: a controller
who ismaking the decision and an environmentwhich is the part of the system not controlled
by the controller. The evolution of the system is partly dependent on the behaviour of the
controller and partly on the environment which could be antagonistic or stochastic in nature.
A strategy is a way how the controller should behave in the system. In other words, it is a
mapping from the execution of the system so far to the decisions available for the controller.
There is also a reward which defines how good a decision taken by the controller is. The
objective of the controller is to find a strategy that optimizes the reward accumulated in the
long term.

When a system fails or runs inefficiently, it leads to financial consequences or even
loss of lives. For example, in late 1970s, the state of Arizona, USA was spending about 14
million USD extra a year for maintenance of their existing highways until they developed
a pavement management system based on a Markov decision process model to improve
allocation of its limited resources while ensuring quality of the roads [GKW82]. A software
flaw in the radiation therapy machine Therac-25 caused the death of six cancer patients
between 1985 and 1987 as they were exposed to an overdose of radiation [LT93]. This
shows the necessity of constructing safe and efficient controller strategy for systems.

The importance of this has triggered numerousworks in different research communities
within computer science, most notably in formal methods, and in artificial intelligence
and machine learning. The works done in these research communities have respective
weaknesses and complementary strengths. On the one hand, algorithms developed in
formal methods are generally complete and provide strong guarantees on the optimality of
computed solutions, but they tend to be applicable to models of moderate size only. On
the other hand, algorithms developed in artificial intelligence and machine learning usually
scale to larger models but only provide weaker guarantees. Instead of opposing the two sets
of algorithms, this thesis tries to combine the strengths of the two approaches in order to
offer new hybrid algorithms that scale better while providing guarantees.

In this thesis, as a running example, we will use a version of the game Pac-Man, a

1.1 Background

very popular arcade video game, created by Toru Iwatani in 1980 :

Example 1.1 In this game, Pac-Man has to eat food pills in an enclosed grid as fast as
possible while avoiding the ghosts. The agents (Pac-Man and the ghosts) can travel in four
directions unless they are blocked by the walls in the grid, and ghosts cannot reverse their
direction.

Figure 1.1: Pac-Man with 4 ghosts in a 9× 21 grid. The figure has been generated using
the code from [DK].

The score decreases by 1 at each step, and increases by 10 whenever Pac-Man eats a
food pill. A win (when the Pac-Man eats all the food pills in the grid) increases the score
by 500. Similarly, a loss (when the Pac-Man gets eaten by a ghost), decreases the score by
500. Here the ghosts can be considered the part of the environment, not controlled by the
Pac-Man. The objective of the game is to find a strategy that optimizes the accumulated
score. �

We have chosen this system as a running example for reasons. The state space
of the underlying system is way too large for the state-of-the-art implementations of exact
algorithms. Indeed, the reachable state space of the small grid shownhere has approximately
1016 states. This calls for heuristic approaches used in learning. Even in this case, we will
show that, formal methods can play an important role and help the heuristic techniques.

1.1 Background

Formal methods In formal methods, the system is represented as a mathematical model
and the desired properties are described as a logical formula. This is useful to assert

2

1.1 Background

the correctness of the controller (model checking) or to automatically design a controller
strategy satisfying the specification (synthesis).

Model checking was introduced in the early 1980s by Clarke and Emerson [CE81]
and Queille and Sifakis [QS82]. This uses brute force to examine the entire state-space
in the model to check whether the specification is satisfied. Given its sound mathematical
foundation, it has been proved to be an effective technique. Typical properties that can be
checked using model checking are of a qualitative nature like: Can Pac-Man stay safe in
next 8 steps irrespective of whatever legal move the ghosts make? The answer of these
properties can be either ‘yes’ or ‘no’. While qualitative specifications are sufficient to model
yes-no properties, formal methods also help to answer quantitative properties like: Given a
strategy for Pac-Man, what is the score we can expect if the ghosts move uniformly in the
grid? For further details on model checking, we refer to [BK08].

In a synthesis problem, the goal is to find a strategy such that if the controller fol-
lows that strategy, the system would satisfy the given specification. This problem was
originally stated by Alonzo Church [Chu57] in the context of circuits. In [McN65], Mc-
Naughton treated this problem in the framework of infinite-duration games. Büchi and
Landweber [BL69] solved it for specifications definable by monadic second order logic.
Algorithms for synthesis problems has been efficiently implemented in multiple tools, for
example Acacia+ [Boh+12] can synthesis strategies for specifications definable in linear
temporal logic.

Markov decision process A popular mathematical framework used to model decision-
making procedures with discrete state space is Markov decision process or MDP which
was introduced by Richard Bellman [Bel57a] in 1957. In an MDP, the transition of the
states satisfy Markov property i.e. given a state and a decision taken by the controller,
the immediate reward and the state evolutions are independent of all previous states and
decisions of the controller. We call the decisions available at a state actions. MDPs have
been used to model systems in various disciplines, including robotics, economics, biology
and manufacturing.

The value of a state is the amount of reward the controller can expect over the time
starting from that state. Bellman showed that these values form a functional equation,
now named as Bellman equation, and also showed a method, now popular as dynamic
programming [Bel57b], to solve these type of equations. Solving this equation also gives
us a strategy for the controller that optimizes the expected reward. The theory of MDP was

3

1.1 Background

further developed and extended by Howard [How60], Blackwell [Bla62; Bla65] and others.
We refer to [Put94] as a comprehensive book on Markov decision processes.

Model checking algorithms for Markov decision processes has been efficiently imple-
mented in tools like Storm [Deh+17] and PRISM [KNP11].

Planning with receding horizon control The dynamic programming techniques suffer
from what Bellman called ‘the curse of dimensionality’, meaning that their computational
requirements grow with the number of states. So it often becomes impractical to calculate
the whole strategy beforehand. In this case, we can apply an online iterative approach
where the controller, upon visiting a new state, computes a good action and takes it. Then
the state evolves stochastically to a new state according to the dynamics specified by the
MDP and the same process is repeated from the new state. This known as decision time
planning [SB18].

Specifically, we plan using receding horizon control [KH06] which has been used in
process control since the 1980s. In this approach, the controller fixes a horizon H and
finds a strategy that optimizes a combination of total reward that can be accumulated in H
steps and an estimation of the value of the state which will be reached inH steps. Then the
controller takes an action based on this strategy. For example, in the game of Pac-Man, we
can guess that a state is bad if the Pac-Man is surrounded by ghosts and far from the food.
Then instead of computing a full plan involving faraway food pills and ghosts, it is more
intuitive for a player to aim for eating food pills nearby and trying to avoid ghosts that are
close as long as Pac-Man does not end up in such a bad state in near future.

Monte Carlo tree search Receding horizon techniques are often coupled with heuristic
search algorithms that avoid the full exploration at the expense of approximation. These
algorithms are based onMonte Carlo methods1, developed by Stanisław Ulam and John von
Neumann in the late 1940s, which use random simulations to solve intractable problems.
Abramson [Abr87] first implemented this in the context of games. The recent, most popular
and most successful heuristic search algorithm is Monte Carlo Tree Search or MCTS.

MCTS uses random simulations to identify the most promising action at the current
state by iteratively building a search tree which dictates which part of the MDP to simulate

1named after a casino in Monaco, as a codename, as the research was part of the development of fission
weapons in Los Alamos National Laboratory, USA.

4

1.2 Contributions

from. This idea of ‘adaptive’ sampling was introduced in [Cha+05] which talked about
balancing between exploration (looking in the part of the state-space that has not been
sampled enough yet) and exploitation (looking in the part of the state-space that appears
to be promising). The algorithm UCT (Upper Confidence Bounds applied to Trees) was
developed in [KS06] which deals with this exploration vs exploitation dilemma. MCTS
showed promising performance in games with very large state space like Go [Cou06]. The
most significant implementation of MCTS is in the computer program AlphaGo [Sil+16],
developed by Google Deepmind, which was able to defeat Lee Sedol, one of the strongest
player in history, in a five-game match with a score of four to one.

Artificial neural network Artificial neural networks or ANN were originally created by
Warren McCulloch and Walter Pitts [MP43] as models which loosely model the neurons in
a brain. These are widely used to approximate non-linear functions from a dataset of known
input and outputs. With the advancement of digital electronics, development of practical
artificial neural networks became feasible in the 1980s which made it popular in the field
of artificial intelligence and machine learning.

A feed-forward neural network is a directed graph divided in multiple layers where
each layer is a function acting on the output of the previous layer. Cybenko [Cyb89] showed
that a network with a single hidden layer containing a large enough number of sigmoid2

units can approximate any continuous function to any degree of accuracy. Despite this ‘uni-
versal approximation’ property of single-hidden-layer networks, in practice approximating
complex functions needs special architecture with multiple layers. Study of these ‘deep’
neural networks are known as deep learning[GBC16].

Instead of explicitly writing the value of states in an MDP into a table during dynamic
programming, neural networks can be used to learn the values (as done during deep Q-
learning [Mni+15]). They can also be used to mimic an ‘expert’ strategy given training
data of the encountered states and actions performed using that strategy (as done during
imitation learning).

2a function of the form f(x) = 1
1+e−x .

5

1.2 Contributions

1.2 Contributions

Symbolic advice While MCTS may offer reasonable performances, they usually need
considerable adjustments that depend on the application to really perform well. One way to
adapt MCTS to a particular application is to bias the search towards promising subspaces
by supplying domain-specific knowledge. We show that this can be done using techniques
from formal methods. More precisely, a formal specification can be used to guide the
simulations to improve the quality of the search. We call these specifications advice. In
the game of Pac-Man, since getting eaten by a ghost leads to an irrecoverably bad reward,
an example of good advice would be to avoid getting eaten by a ghost3. This can be used
to prune the search tree by removing the part of the tree containing the losing states. For
example, we can ask a question as follows:

Q: If Pac-Man takes the action ‘North’ from our current state, can he make sure to stay
safe in next 8 steps irrespective of whatever legal moves the ghosts make?

If the answer to our question is ‘No’, we can ignore the action ‘North’ and never simulate
from the subtree under the action ‘North’.

On the theoretical side, we study the impact of using symbolic advice on the guarantees
offered by MCTS. We identify sufficient conditions for the symbolic advice to preserve the
convergence guarantees of the MCTS algorithm. On a more practical side, we show how
symbolic advice can be implemented using different formal method techniques. These
results have been partially reported in [BCR20].

To demonstrate the practical interest of our techniques, we implemented a framework
to run MCTS algorithms guided by symbolic advice on systems modelled as MDPs. We
applied our implementation on different systems: in the game of Pac-Man and also for safe
and optimal scheduling of jobs in a task system. The last work is reported in [Bus+21].

Imitation learning of expert strategies Our another contribution is to create an expert
imitation framework to train an artificial neural network in order to replace exact advice
by lower-latency neural advice, or even to imitate the expert strategy that can be computed
offline. This imitation framework relies on a data generation algorithm which leverages

3This could also be considered a piece of advice in real life; although statistically, compared to Pac-Man,
a sane human encounters much less number of ghosts in their life.

6

1.3 Related works

formal methods in order to obtain ‘perfect data’ for our samples on the one hand and
to generate additional samples on the other hand, as long as statistical model checking4

indicates that it is required to improve the quality of the imitation.

In general, we define a ranking of actions for every state such that themaximally ranked
elements are those played by the strategy. Intuitively, the ranking tells us how good every
action is from the current state. We propose to train a neural network to learn such a ranking
function as an offline step. This neural network can then be used as a full-fledged strategy
or as a neural advice to efficiently guide MCTS. This neural advice generated aims for an
expected reward comparable with the expert advice, for a fraction of its online latency.

In order to stop the data aggregation loop, we monitor the practical performance of the
neural network. Classical metrics to evaluate a neural network may not be representative
of the expected reward the neural network will obtain when used as an advice or a full
strategy. Indeed, a strategy may make mistakes at crucial moments despite being almost
always correct in its decisions, leading to vastly different outcomes. Thus, we propose
using statistical model-checking to compute an approximation of the expected reward of
our learnt strategies.

We implemented this framework to imitate strategies and advice in two systems: in
the game of Pac-Man and Frozen-Lake.

1.3 Related works

Simulation-based techniques has been used in statistical model checking [Dac+16;
YS02], which uses Monte Carlo methods to model check larger systems to get approximate
results that hold with high probability. The learning based methods used in planning and
reinforcement learning has been explored in [Brá+14; KPR18] for quantitative objectives
and in [Ash+17; KM17; Aga+22] for long-term rewards. Works has been done for partially
observable MDPs [Cha+17b] and other models which are too big to analysis using classical
model checking methods. Monte Carlo tree search has been used for priced timed automata
when the models are too big for existing complete methods [Jen+22].

In [Ash+18], MCTS has been combined with bounded real-time dynamic program-

4In statistical model checking, quantitative properties are checked by simulating enough executions of the
system till an estimation of the actual value can be computed with required precision and the confidence level.

7

1.4 Organization of this thesis

ming (BRTDP) technique to create hybrid algorithms to verify reachability in large MDPs.
In [BW15], the authors have integrated shallow minimax search in the MCTS framework.
In [Als+18; Jan+14], the authors provide a general framework to add safety properties to
reinforcement learning algorithms via shielding. These techniques analyse statically the
full state space of the game in order to compute a set of unsafe actions to avoid. A variation
of shielding called safe padding has been studied in [HAK20].

In [GGR18], the scheduling problemwas introduced but the authors made the assump-
tion that the underlying distributions of the tasks are known. In the work mentioned in the
thesis, we drop this assumption here and provide learning algorithms.

Using deep learning to replace expert (but expensive) policies by learnt strategies is
known to be advantageous when the expert policy is unable to meet real-time (latency)
constraints (see, e.g. [Iva+19, Section 5.2] and [Her+18]). In order to obtain a satisfactory
dataset to train on, we propose a sharp variant of theDAgger algorithm, a dataset aggregation
technique introduced in [RGB11; RB10]. A notable difference is that we propose to use
model checkers instead of human experts in order to get better-quality data. We also identify
so-called counterexample configurations in order to guide the aggregation loop to the most
interesting states. This is reminiscent of CEGAR approaches for hybrid systems such
as [CDS19] that identify states violating a property then focus the deep learning procedures
on such states.

1.4 Organization of this thesis

The thesis is organized in multiple chapters. Chapter 2 introduces necessary notions
and recalls the results needs for the next chapters. In Section 2.4, we also present an
algorithm to find practical strategies for reachability in an MDP. In Chapter 3 and 4, we
introduced techniques from formal methods that can be used in decision-time planning
to find optimal strategies in MDPs. Specifically, in Chapter 4, we introduced the notion
of advice and described their used in Monte Carlo tree search in Chapter 5. Chapter 7
discusses learning techniques to imitate a strategy generated by exact of heuristic methods.
Chapter 5 and 8 shows applications of the techniques presented in this thesis on different
systems modelled as MDPs.

8

Chapter 2

Preliminaries

2.1 Transition systems and games

In formal methods, Transition systems are used to describe the behaviour of a system.
Transition systems are directed graphswhere the vertices represent states of the system and
edges model the transitions which denotes how the states of the system change. The states
are often labelled with atomic propositions which describes the characteristics satisfied by
that state. Formally we define the transition system like this:

Definition 2.1 (Transition system)
A (finite) transition system or a TS is a tuple T = (S,E,AP, L), where

S is a finite set of states,
E is a relation in S × S such that (s, s′) denotes that there is a transition
available from s to s′,
AP is a finite set of atomic proposition,
L is the labelling function fromS to 2AP such thatL(s) denotes the propositions
in AP that is satisfied by the state s.

The set of propositions AP often is not explicitly defined. In that case, it is assumed
that AP = S with labelling function L(s) = {s}.

For a transition system T = (S,E,AP, L), we will call the graph G = (S,E) the
underlying graph of T .

Paths The transition system starts from some state s0 in S and evolves according to the
relationE. That means, if s is the current state, a next state s′ is chosen in a nondeterministic
fashion, such that (s, s′) ∈ E. We call a sequence of states p = q0q1 . . . qi an i-length path
if for all t ∈ [0, i− 1], (qt, qt+1) ∈ E. An infinite path is an infinite sequence p = q0q1 . . .

such that for all t ∈ N, (qt, qt+1) ∈ E. We denote the finite prefix of length t of a infinite
path p = q0q1 . . . by p|t = q0q1 . . . qt. We respectively denote the last and first state of a path

2.1 Transition systems and games

p = s0a0s1 . . . sn by last(p) = sn and first(p) = s0. Let p = s0s1 . . . si and p′ = s′0s
′
1 . . . s

′
j

be two paths such that si = s′0. Then, p · p′ denotes the path s0s1 . . . sis
′
1 . . . s

′
j .

Example 2.1 Consider the transition system TS described in Figure 2.1 which models the
movement of a robot. When the robot moves, it either falls (e.g., due to some defect in its
motor) or it keeps moving. From the Fallen state, the robot can start moving again.

Moving
Fallen

Figure 2.1: A transition system

This transition system contains two states. From stateMoving, there are two transitions
available leading either to the state Fallen or to itself. From the state Fallen, there is only
one transition. �

2.1.1 Two player games

A game is played between two players in a transition system, namely player 0 and
player 1. The set of states S is partitioned into two sets S0 and S1. The states in S0 is
controlled by player 0 so that player 0 can decide the next state the system would evolve to.
Similarly, the vertices in S1 are controlled by player 1.

The winning condition in the game is defined by a set of infinite paths Win0 ⊆ Sω.
Player 0 wins the game if the infinite path generated during the game is in Win0. Player 1

wins the game if the infinite path generated during the game is not in Win0. Formally we
define 2-player game as follows:

10

2.1 Transition systems and games

Definition 2.2 (2-player game)
A (2-player) game is a tuple G = (T, S0, S1,Win0) where

T = (S,E,AP, L) is a transition system,
(S0, S1) is a partition of the set of states S in T ,
Win0 is a set of infinite paths.

For a game G = (T, S0, S1,Win0) where T = (S0] S1, E,AP, L), we call the tuple
(S,E, S0, S1) the underlying game graph of G.

Strategies A (deterministic) strategy for player 0 in the 2-player game G is a function
σ : S∗S0 → S that assigns to each path s0s1 . . . sn, such that sn ∈ S0, a state sn+1 ∈ S
with (sn, sn+1) ∈ E.

For a gameG = (T, S0, S1,Win0), a state s and a strategyσ for player 0, letPathsG(s, σ)

be the infinite paths p = s0s1 . . . in T such that s0 = s and for all t ∈ N, if st ∈ S0 then
σ(p|t) = st+1. A strategy σ is winning for player 0 if PathsG(s, σ) ⊆ Win0.

Analogously, a strategy for player 1 is a function τ : S∗S1 → S that assigns to each
path prefix s0s1 . . . sn, with Sn ∈ S1, a state sn+1 ∈ S with (sn, sn+1) ∈ E. For a game
G = (G,S0, S1,Win0), a state s and a strategy τ for player 1, let PathsG(s, τ) be the infinite
paths p = s0s1 . . . in T such that s0 = s and for all t ∈ N, if st ∈ S1 then τ(p|t) = st+1. A
strategy τ is winning for player 1 if all paths in PathsG(s, τ) ∩Win0 = ∅.

A non-deterministic strategy for player 0 is a function σ : S∗S0 → 2S that assigns
to each path s0s1 . . . sn, with sn ∈ S0, a set of states Sn+1 ⊆ S with (sn, sn+1) ∈ E for
all sn+1 ∈ Sn+1. Similar to deterministic strategies, for a game G = (T, S0, S1,Win0), a
state s and a non-deterministic strategy σ for player 0, let PathsG(s, σ) be the infinite paths
p = s0s1 . . . in T such that s0 = s and for all t ∈ N, if st ∈ S0 then st+1 ∈ σ(p|t). We call
this strategy winning for player 0 if PathsG(s, σ) ⊆ Win0.

For a non-deterministic strategy σ and a deterministic strategy σ′, we say σ′ ⊆ σ if for
all paths p ∈ S∗, σ′(p) ∈ σ(p). A strategy σ is memoryless if σ(p) depends only on last(p).

Reachability and safety games Depending on the condition ϕ, we get different types of
2-player games. For example:

11

2.2 Probability

Definition 2.3 (Reachability game)

Let G = (T, S0, S1,Win0) where T = (S,E,AP, L), F ⊆ S and p = s0s1 . . . is in
Win0 if there exists an i ∈ N such that si ∈ F . G is called a reachability game.
Given a horizonH ∈ N, let G = (T, S0, S1,Win0) where T = (S,E,AP, L), F ⊆ S

and p = s0s1 . . . is in Win0 if there exists an i ≤ H such that si ∈ F . G is called a
finite horizon reachability game.

Winning strategies (if exist) for both players in these games can be found by iteratively
constructing attractor sets using backward breadth-first search in timeO(|S|+|E|) [BCJ18,
Theorem 1]. Also, the resulting strategies are memoryless.

Definition 2.4 (Safety game)

Let G = (T, S0, S1,Win0) where T = (S,E,AP, L), F ⊆ S and p = s0s1 . . . is in
Win0 if for all i ∈ N, si ∈ F . G is called a safety game.
Given a horizonH ∈ N, let G = (T, S0, S1,Win0) where T = (S,E,AP, L), F ⊆ S

and p = s0s1 . . . is in Win0 if for all i ≤ H , si ∈ F . G is called a finite horizon
safety game.

Note that safety games are reachability games for player 1 with the target set S \F . So
for these games also memoryless winning strategies (if exist) for both players are computed
in time O(|S|+ |E|).

Theorem 2.1 ([BJW02, Fact 7])
In a safety game G, there exists a unique memoryless winning non-deterministic
strategy σ for player 0 such that for all strategies σ′ winning for player 0 in G,
σ′ ⊆ σ.

We call this non-deterministic strategy in safety games, most general strategy for
safety.

2.2 Probability

We briefly introduce the concepts of probability measure and random variables which
will be useful for reasoning in the following chapters. The reader may refer to books on

12

2.2 Probability

probability theory e.g. [Ros10; AD99] for further details.

Given a set of outcomes Ω, a σ-algebra F ⊆ 2Ω is a set consisting of subsets of Ω that
contains the empty set ∅ and is closed under complementation and countable unions. The
elements of the set F is called events.

A probability measure on (Ω,F) is a function P : F → [0, 1] such that P(Ω) = 1 and
if {Ai}∞i=1 ⊆ F is a countable collection of pairwise disjoint events, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai) .

A probability space is a tuple (Ω,F ,P) where F is a σ-algebra on Ω and P is a probability
measure on (Ω,F). For an event e ∈ F , the value P(e) is called the probability of the
event e. For the case when Ω is countable, we can directly define a probability distribution
P : Ω → [0, 1] such that

∑
ω∈Ω P(ω) = 1. In that case, the probability of an event e is∑

ω∈e P(ω). For a countable set S, we denote the set of all probability distribution byD(S).
The support of a distribution d ∈ D(S) is the set Supp(d) = {s ∈ S | d(s) > 0}.

We say two distributions d and d′ are structurally identical if Supp(d) = Supp(d′).
Given two structurally identical distributions d and d′, for 0 < ε < 1, we say that d is
ε-close to d′, denoted d ∼ε d′, if Supp(d) = Supp(d′), and for all a ∈ Supp(d), we have
that |d(a)− d′(a)| ≤ ε.

A (real-valued) random variable is a function X : Ω → R. The probability that X
takes a value in a set S ⊆ R is written as

P(X ∈ S) = P({ω ∈ Ω | X(Ω) ∈ S}) .

Example 2.2 The possible outcomes of a fair coin toss have twooutcomesΩ = {heads, tails}.
With 2Ω as the σ-algebra, the probability measure P is given by

P(φ) = 0, P({heads}) = P({tails}) =
1

2
, P({heads,tails}) = 1.

We can then have a real-valued random variableX that models a payoff of 1 for a successful
bet on heads as follows:

X(ω) =

1 if ω = heads,

0 if ω = tails.

This gives a probability distribution for X where P(X = 1) = P(X = 0) = 1
2
. �

A set of n random variablesX1, X2 . . . Xn are independent if for any sequence of sets

13

2.2 Probability

S1, S2 . . . Sn,

P(
n∧
i=1

Xi ∈ Si) =
n∏
i=1

P(Xi ∈ Si) .

We state the following inequality which is a useful property for random variables:

Theorem 2.2 (Chernoff-Hoeffding inequality [Hoe63, Theorem 2])
Let X1, X2, . . . Xn be independent random variables in [0, 1]. Let Sn =

∑
nXi.

Then for all t > 0, the following bounds hold:

P
[
|Sn − E[Sn]| ≥ t

]
≤ 2 · exp

(
−2t2

n

)

2.2.1 Learning discrete finite distributions

To learn an unknown discrete distribution d defined on a finite domain Supp(d), we
collect independent and identically distributed (i.i.d.) samples from that distribution and
infer a model of it. Formally, given a sequence S = (sj)j∈J of samples drawn i.i.d. from
the distribution d, we denote by d(S) : Supp(d) → [0, 1], the function that maps every
element a ∈ Supp(d) to its relative frequency in S, i.e.,

d(S)(a) =
|{j ∈ J | sj = a}|

|J | .

The following lemma tells us that if the size of S is large enough then the model d(S) is
close to the actual d with high probability:

Lemma 2.1
For all finite discrete distributions d with |Supp(d)| = r, for all ε, γ ∈ (0, 1) such
that mina∈Supp(d)(d(a)) > ε, if S is a sequence of n ≥ r

2ε2
(ln 2r− ln γ) i.i.d. samples

drawn from d, then d ∼ε d(S) with probability at least 1− γ.

Proof For a distribution d, and an element e in Supp(d), suppose we collectm independent
and identically distributed (i.i.d.) samples from d. Let Xde

1 , . . . , X
de
m be independent and

identically distributed random variables where

Xde
m =

1 if sj = e,

0 otherwise.

Note thatE(Xde
m) = d(e). LetSdem =

∑
mX

de
n . Then, Sdem = d(S)(e), the relative frequency

14

2.3 Probabilistic systems

of e. As the variables are i.i.d., we have E(Sden) = m · d(e).

Then from Theorem 2.2, we have:

P
[
|Sm − E[Sm]| ≥ ε

]
≤ 2 · exp

(
−2ε2

m

)
.

Puttingm ≥ 1
2ε2

(ln 2r − ln γ), we get,

P
[
|Sm − E[Sm]| ≥ ε

]
≤ γ

r
.

Since there are r elements in the domain, we need a total of at least m · r samples to
approximate d, and hence the result. �

2.3 Probabilistic systems

2.3.1 Markov chain

Markov chains are transition systems where the state of the system evolves according
to a probability distribution. This distribution only depends on the current state of the
system and not on, for example, the whole history of the evolution of the system till the
current state. A Markov chain can be defined as follows:

Definition 2.5 (Markov chain)
A (discrete-time) Markov chain or an MC is a tupleM = (S, P,AP, L), where

S is a countable set of states,
P is a mapping from S to D(S) such that P (s)(s′) denotes the probability of
moving from state s to state s′ in a single transition,
AP is a finite set of atomic proposition,
L is the labelling function fromS to 2AP such thatL(s) denotes the propositions
in AP that are satisfied by the state s.

For ease of notation, we denote the value P (s)(s′) as P (s, s′). The set of propositions
AP often is not explicitly defined. In that case, it is assumed that AP = S with labelling
function L(s) = {s}.

15

2.3 Probabilistic systems

Paths For a Markov chainM , a path of length i > 0 is a sequence of i + 1 consecutive
states. We say that p = s0s1 . . . si is an i-length path in the MCM if for all t ∈ [0, i− 1],
st+1 ∈ Supp(P (st)). We also consider states to be paths of length 0.

An infinite path is an infinite sequence p = s0s1s2 . . . of states such that for all t ∈ N,
st+1 ∈ Supp(P (st)). We denote the finite prefix of length t of a finite or infinite path
p = s0s1 . . . by p|t = s0 . . . st. For a finite or infinite path p = s0s1 . . ., we denote
its (i + 1)th state by p[i] = si. We respectively denote the last and first state of a path
p = s0s1 . . . sn by last(p) = sn and first(p) = s0. Let p = s0s1 . . . si and p′ = s′0s

′
1 . . . s

′
j

be two paths such that si = s′0. Then, p · p′ denotes s0s1 . . . sis
′
1 . . . s

′
j .

For an MCM , the set of all finite paths of length i is denoted by PathsiM . We denote
the set of all finite paths inM by PathsM and the set of finite paths of length at most H by
Paths≤HM . The set of all infinite paths is denoted by PathsωM .

If p ∈ PathsiM and i ≤ j, then let PathsjM(p) denote the set of paths p′ in PathsjM such
that there exists p′′ ∈ Pathsj−iM with p′ = p · p′′. In particular, let PathsiM(s) denote the set
of paths p in PathsiM such that first(p) = s. Similarly, if p ∈ PathsM , then let PathsM(p)

denote the set of paths p′ in PathsM such that there exists p′′ ∈ PathsM with p′ = p · p′′.
For p ∈ PathsM , let PathsωM(p) denote the set of paths p′ in PathsωM such that there exists
p′′ ∈ PathsωM with p′ = p · p′′. PathsωM(p) is called the cylinder set of p.

σ-algebra and probability measures The σ-algebra FM associated with the MC M is
the smallest σ-algebra that contains the cylinder sets PathsωM(p) for all p ∈ PathsM . For a
state s in S, a measure is defined for the cylinder sets as

PM,s(PathsωM(s0s1 . . . si)) =


∏i−1

t=0 P (st, st+1) if s0 = s

0 otherwise.

Also PM,s(PathsωM(s)) = 1 and PM,s(PathsωM(s′)) = 0 for all states s′ 6= s. From
Carathéodory’s extension theorem [AD99, section 1.3.10], this can be extended to a unique
probability measure PM,s on the aforementioned σ-algebra. In particular, if C ⊆ PathsM is
a set of finite paths forming pairwise disjoint cylinder sets, then

PM,s(∪p∈CPathsωM(p)) =
∑
p∈C

PM,s(PathsωM(p)) .

Example 2.3 Consider the Markov chain M described in Figure 2.2 which models the
movements of a robot. When the robot moves, with probability 0.15, the robot falls; and

16

2.3 Probabilistic systems

with probability 0.85, it keeps moving. From the fallen state, the robot can start moving
again with probability 0.5 in every try. This Markov chain contains two states, namely
Moving and Fallen. The probability distributions are represented in the dotted lines.

Moving
Fallen

0.15

0.85

0.5

0.5

Figure 2.2: A Markov chain

Consider the finite paths p1 = Moving ·Fallen and p2 = Moving ·Moving ·Fallen.
We have the following:

PM,Moving(PathsωM(p1)) = 0.15

PM,Moving(PathsωM(p2)) = 0.85× 0.15 = 0.1275

The probability of the robot falling either at one or two steps starting from Moving can
be calculated by PM,Moving(PathsωM (p1) ∪ PathsωM (p2)) = 0.15 + 0.1275 = 0.2775. This way
probability of the robot eventually falling is

∞∑
i=1

PrM,Moving(PathsωM ((Moving)i · Fallen))

Which is equal to
∑∞

i=1((0.85)i−1 × 0.15) = 1. �

We may omit theM from the subscript from the previous notations if the MC is clear
from the context.

17

2.3 Probabilistic systems

2.3.2 Probabilistic computation tree logic

Probabilistic computation tree logic or PCTL [HJ94] is a branching temporal logic
which can be used to formulate conditions on a Markov chain. PCTL state formulae over a
set of atomic propositions AP are defined according the following grammar:

Φ := true | a | Φ1 ∧ Φ2 | ¬Φ | PJ(ϕ)

where a ∈ AP , Φ1 and Φ2 are state formulae, ϕ is a path formula and J ⊆ [0, 1] is an
interval with rational bounds.

PCTL path formulae are defined according the following grammar:

ϕ :=©Φ | Φ1UΦ2 | Φ1U≤nΦ2

where Φ1 and Φ2 are state formulae and n ∈ N.

The satisfaction relation |= between an infinite play p = s0s1 . . . and a PCTL path
formula is defined as follows:

p |=©Φ if p[1] |= Φ.
p |= Φ1UΦ2 if there exists i ∈ N such that p[i] |= Φ2 and for all 0 ≤ j < i, p[j] |= Φ1.
p |= Φ1U≤nΦ2 if there exists i ≤ n such that p[i] |= Φ2 and for all 0 ≤ j < i,
p[j] |= Φ1.

We define the probability of an PCTL path formula ϕ holding at a state s ∈ S by

PM(s |= ϕ) = PM,s({p ∈ PathsωM(s) | p |= ϕ})

The satisfaction relation |= between a state s ∈ S and a PCTL state formula is defined
as follows:

s |= true.
s |= a if a ∈ L(s).
s |= Φ1 ∧ Φ2 if s |= Φ1 and s |= Φ2.
s |= ¬Φ if s 6|= Φ.
s |= PJ(ϕ) if PM(s |= ϕ) ∈ J .

Using the Boolean connectives ∧ and ¬, we can define other Boolean connectives
such as ∨,→,↔. The U operator (and its bounded version) also allows us to define some
other useful operators, namely ♦ and � as follows:

♦Φ = true UΦ and �Φ = ¬♦¬Φ

18

2.3 Probabilistic systems

♦≤nΦ = true U≤nΦ and �≤nΦ = ¬♦≤n¬Φ

In other words,

p |= ♦Φ if there exists i ∈ N such that si |= Φ.
p |= ♦≤nΦ if there exists i ≤ n such that si |= Φ.
p |= �Φ if for all i ∈ N, si |= Φ.
p |= �≤nΦ if for all i ≤ n, si |= Φ.

Checking if a state satisfies a PCTL formula Φ is done by bottom-up traversal of the
parse tree of Φ where the nodes of the parse tree represent the subformulae of Φ.

Theorem 2.3 ([BK08, Theorem 10.40])
For a state s ∈ S in a Markov chainM , and PCTL state formula Φ, whether s |= Φ

can be checked in time
O(poly(|M |) · nmax · |Φ|)

where nmax is the maximal step bound that appears in a sub path formula ψ1U≤nψ2

of Φ (nmax = 1 if Φ does not contain a U≤n operator).

2.3.3 Probabilistic bisimulation

Probabilistic bisimulation [SL94] relations are equivalence relations between states
which requires two bisimilar states to be equally labelled and exhibit equivalent stepwise
behaviour.

Definition 2.6 (Bisimulation for Markov chains)
Let M = (S, P,AP, L) be a Markov chain. A (probabilistic) bisimulation is an
equivalent relation ∼ on S such that for all states s1, s2 ∈ S such that s1 ∼ s2, we
have:

L(s1) = L(s2), and,
For any state t ∈ S,∑t′∼t P (s1, t

′) =
∑

t′∼t P (s1, t
′).

If s1 ∼ s2, we call s1 and s2 bisimilar equivalent or bisimilar. The relation∼ partitions
the set S into equivalent classes. The set {s′ | s′ ∼ s} is denoted by [s]∼. We denote
the set of equivalent classes by S∼. The first condition in Definition 2.6 states that the
bisimilar states are equally labelled. The last condition requires that for bisimilar states the

19

2.3 Probabilistic systems

probability of moving by a single transition to some equivalence class is equal.

Bisimulation can be used to define smaller Markov chains, which satisfies similar
properties as the original Markov chain.

Definition 2.7 (Bisimulation quotient of a Markov chain)
LetM = (S, P,AP, L) be a Markov chain. The quotient Markov chain is defined by
M∼ = (S∼, P

′, AP, L′) where
For s, t ∈ S, P ′([s]∼, [t]∼) =

∑
t′∼t P (s, t′)

For s ∈ S, L′([s]∼) = L(s)

Note that P ′ and L′ are well-defined from the definition of bisimulation.

Bisimulation equivalent paths We can lift the notion of bisimulation equivalence to
paths. The paths p1 = s0s1 . . . and p2 = t0t1 . . . are bisimulation equivalent, denoted by
p1 ∼ p2, if they are statewise bisimilar : p1 ∼ p2 if and only if si ∼ ti for all i ≥ 0.

Bisimulation closed σ-algebra LetM = (S, P,AP, L) be a Markov chain. For classes
S0, S1, . . . , Sn ∈ S∼, we denote the set of all infinite paths s0s1 . . . such that si ∈ Si

for 0 ≤ i ≤ N as PathsωM∼(S0S1 · · ·Sn). The bisimulation closed σ-algebra is the
smallest σ-algebra containing PathsωM∼(S0S1 · · ·Sk) for any sequence of equivalent classes
S0, S1, . . . , Sk ∈ S∼. We denote this σ-algebra by FM∼ .

All events in FM∼ are measurable with respect to the standard sigma algebra FM
associated with the Markov chainM . In other words, FM∼ ⊆ FM as a basic element in FM∼
can be written as countable uninon of basic elements in FM :

PathsωM∼(S0S1 · · ·Sk) =
⋃

s0s1···sk∈PathsM
si∈Si,0≤i≤k

PathsωM(s0s1 · · · sk)

The following theorem states that bisimulation equivalence preserves PCTL-definable
properties:

Theorem 2.4 ([BK08, Theorem 10.67])
Let M = (S, P,AP, L) be a Markov chain and s1, s2 ∈ S. Then the following
statements are equivalent:

1. s1 ∼ s2.

20

2.3 Probabilistic systems

2. For a PCTL formula Φ, the following statements are equivalent:
s1 |= Φ inM
s2 |= Φ inM
[s1]∼ |= Φ inM∼.

2.3.4 Markov decision process

A Markov decision process can be viewed as an extension of Markov chains and
transition systems with finite state space which allows both probabilistic and nondetermin-
istic transitions. It is also augmented with rewards corresponding to the states and the
state-action pairs. A Markov decision process can be defined as follows:

Definition 2.8 (Markov decision process)
A Markov decision process or an MDP is a tuple M = (S,A, P,R,RT , AP, L),
where

S is a finite set of states,
A is a finite set of actions,
P is a partial mapping from S × A to D(S) such that P (s, a)(s′) denotes the
probability that action a in state s leads to state s′,
R is a partial mapping from S ×A to R which defines the reward obtained for
taking a given action from a state,
RT is a mapping from S to R that assigns a terminal reward to each state in S,
AP is a finite set of atomic proposition,
L is the labelling function fromS to 2AP such thatL(s) denotes the propositions
in AP that is satisfied by the state s.

Note that not all actions may be legal from a state as P is a partial function. Therefore,
if an action a is legal from a state s, we will have

∑
s′∈S P (s, a)(s′) = 1. Otherwise,

we will have P (s, a)(s′) is undefined (denoted by ⊥) for all s′ ∈ S. Similarly, if an
action a is legal from a state s, R(s, a) will have a value in R. Otherwise, R(s, a) = ⊥.
By abuse of notation, we can also use A to denote a mapping from S to 2A, where
A(s) = {a ∈ A | ∀s′ P (s, a)(s′) 6= ⊥}, the set of legal actions from the state s.

Often the function RT is not explicitly defined. In that case, it is assumed that
RT (s) = 0. For ease of notation, we denote the value P (s, a)(s′) as P (s, a, s′). The set

21

2.3 Probabilistic systems

of propositions AP often is not explicitly defined. In that case, it is assumed that AP = S

with labelling function L(s) = {s}.

Paths The definitions and notations used for Markov chain can be extended in the case
of MDPs. For a Markov decision process M , a path of length i > 0 is a sequence of i
consecutive states and actions followed by a last state. We say that p = s0a0s1 . . . si is an
i-length path in the MDPM if for all t ∈ [0, i− 1], at ∈ A and st+1 ∈ Supp(P (st, at)). We
also consider states to be paths of length 0. We respectively denote the last and first state
of a path p = s0a0s1 . . . sn by last(p) = sn and first(p) = s0.

An infinite path is an infinite sequence p = s0a0s1 . . . of states and actions such that
for all t ∈ N, at ∈ A and st+1 ∈ Supp(P (st, at)). We denote the finite prefix of length t of
a finite or infinite path p = s0a0s1 . . . by p|t = s0a0 . . . st. Let p = s0a0s1 . . . si and p′ =

s′0a
′
0s
′
1 . . . s

′
j be two paths such that si = s′0. Then, p ·p′ denotes s0a0s1 . . . sia

′
0s
′
1 . . . s

′
j . Let

p = s0a0s1 . . . si be a path , a be an action and s be a state ofM such that s ∈ Supp(P (si, a)).
Then, p · as denotes the path s0a0s1 . . . sias.

For an MDPM , the set of all finite paths of length i is denoted by PathsiM . We denote
the set of all finite paths inM by PathsM and the set of finite paths of length at most H by
Paths≤HM . The set of all infinite paths is denoted by PathsωM .

If p ∈ PathsiM and i ≤ j, then let PathsjM(p) denote the set of paths p′ in PathsjM such
that there exists p′′ ∈ Pathsj−iM with p′ = p · p′′. In particular, let PathsiM(s) denote the set
of paths p in PathsiM such that first(p) = s. Similarly, if p ∈ PathsM , then let PathsM(p)

denote the set of paths p′ in PathsM such that there exists p′′ ∈ PathsM with p′ = p · p′′.
For p ∈ PathsM , let PathsωM(p) denote the set of paths p′ in PathsωM such that there exists
p′′ ∈ PathsωM with p′ = p · p′′.

Strategies A (probabilistic) strategy is a function σ : PathsM → D(A) that maps a path
p to a probability distribution in D(A). A strategy σ is deterministic if the support of the
probability distributions σ(p) has size 1. A strategy σ is memoryless if σ(p) depends only
on last(p), i.e. if σ satisfies that for all p, p′ ∈ PathsM , last(p) = last(p′)⇒ σ(p) = σ(p′).

For a probabilistic strategy σ and i ∈ N, let PathsiM(σ) denote the paths p = s0a0 . . . si

in PathsiM such that for all t ∈ [0, i−1], at ∈ Supp(σ(p|t)). Analogously, for a probabilistic
strategy σ, let PathsωM(σ) denote the paths p = s0a0 . . . in PathsωM such that for all t ∈ N,
at ∈ Supp(σ(p|t)). Also, for a probabilistic strategy σ, let PathsM(σ) denote the set of

22

2.3 Probabilistic systems

finite paths p = s0a0 . . . in PathsM such that for all t ∈ N, at ∈ Supp(σ(p|t)). For a finite
path p of length i ∈ N and some j ≥ i, let PathsjM(p, σ) denote PathsjM(σ) ∩ PathsjM(p).
Similarly, for a finite path p, let PathsM(p, σ) denote PathsM(σ) ∩ PathsM(p) and let
PathsωM(p, σ) denote PathsωM(σ) ∩ PathsωM(p).

For ease of notation, for a stategy σ, we denote the value σ(p, a)(s) as σ(p, a, s).

A nondeterministic strategy is a function σ : PathsM → 2A that maps a finite path p
to a subset of A. For a strategy σ′ and a nondeterministic strategy σ, we say σ′ ⊆ σ if for
all p, Supp(σ′(p)) ⊆ σ(p). For a strategy σ, we can construct a non-deterministic strategy
non-det(σ) by non-det(σ)(p) = Supp(σ(p)).

Markov chain defined by strategies An MDP M equipped with a strategy σ defines
an MC Mσ. Intuitively, this is obtained by unfolding M , using the strategy σ and the
probabilities inM to define the transition probabilities and ignoring the rewards.

Formally Mσ = (PathsM(σ), Pσ, AP, Lσ) where for all finite paths p ∈ PathsM(σ),
Pσ(p, p · as) = σ(p, a) · P (last(p), a, s) and Lσ(p) = L(last(p)). Thus a finite path p in
PathsM(σ) uniquely matches a finite path p′ in Mσ when last(p′) = p. This way when a
strategy σ and a state s is fixed, the probability measure defined inMσ is also extended for
paths in PathsM(σ). In other words, the cylinder set of a path p ∈ PathsM has probability
PMσ ,s(PathsωM(p′)), if p matches with p′.

For ease of notation, we write PMσ ,s as Pσs . We write the expected value of a random
variable X with respect to the probability distribution Pσs as Eσs (X).

Example 2.4 Consider a simpleMarkov decision processM used in reinforcement learning
to train a robot the most effective way to move by associating rewards to different actions.
There are two possible ways for the robot to move: either it can walk or it can run. Running
is more rewarding (it gives 2 reward instead of 1), but also if the robot tries to run, with
probability 0.3, the robot falls. From the fallen state, the robot can stand again with
probability 0.5. The robot gets a reward of −1 when it tries to stand again from the fallen
state. This MDP is described in Figure 2.3. The terminal rewards are 0 for both states.

Consider the following memoryless strategy σ:

σ(p) =

[walk 7→ 0.5, run 7→ 0.5] if last(p) = Moving

[stand 7→ 1] if last(p) = Fallen

23

2.3 Probabilistic systems

Moving
Fallen

run | 2

stand | −1

walk | 1 0.3

0.7

0.5

0.5

Figure 2.3: A Markov Decision Process

ThenMσ is the MC described in Example 2.3. �

Total reward The total reward of horizon n for a path p = s0a0 . . . in M is defined as
RewardnM(p) =

∑n−1
i=0 R(si, ai) +RT (sn).

The expected total reward of a probabilistic strategy σ in an MDP M , starting from
state s and for a finite horizon n ∈ N, is defined as ValnM(s, σ) = Eσs [RewardnM]. The
optimal expected total reward of horizon n starting from a state s in an MDPM is defined
over all strategies σ inM as ValnM(s) = supσ ValnM(s, σ). One can restrict the supremum
to deterministic strategies [Put94, Theorem 4.4.1.b].

Average reward The (long-term) average reward of an infinite path p = s0a0s1 . . . inM
is defined as AvgRewardM(p) = lim infn→∞

1
n

RewardnM(p).

The expected average reward of a probabilistic strategy σ in an MDP M , starting
from state s, is defined as ValM(s, σ) = Eσs [AvgRewardM]. The optimal expected average
reward starting from a state s in an MDP M is defined over all strategies σ in M as
ValM(s) = supσ ValM(s, σ). One can restrict the supremum to deterministic memoryless
strategies [Put94, Proposition 6.2.1]. A strategy σ is called ε-optimal for the expected
average reward if ValM(s, σ) ≥ ValM(s)− ε for all s.

24

2.3 Probabilistic systems

Value iteration Value iteration is a dynamic programming [Put94, Section 4.5] technique
that uses the fact that for all s in S and i ∈ N:

Val0M(s) = RT (s) , and

Vali+1
M (s) = max

a∈A

[
R(s, a) +

∑
s′

P (s, a, s′)ValiM(s′)

]
(2.1)

We define opti+1
M (s) = arg maxa∈A

[
R(s, a) +

∑
s′ P (s, a, s′)ValiM(s′)

]
, i.e. the action

that maximizes the value in the above equation1.

For a state s ∈ S and i ∈ N, let σi,∗M,s denote a deterministic strategy that maximizes
ValiM(s, σ), and refer to it as an optimal strategy for the expected total reward of horizon i
at state s. Then for a state s and a horizon i, σi,∗M,s(p) = opt

i−|p|
M (last(p)). We also define,

Vali+1
M (s, a) =

[
R(s, a) +

∑
s′ P (s, a, s′)ValiM(s′)

]
for a state s and an action a.

Moreover, 1
n

ValnM(s) approximates ValM(s):

Theorem 2.5 ([Put94, Theorem 9.4.1.b])
For an MDPM , a state s ∈ S,

lim
n→∞

1

n
ValnM(s) = ValM(s)

This gives Algorithm 1 to approximate the long term average reward. This involves
iterating Equation 2.1 till a suitable stopping condition is met to get an ε-close value.

Algorithm 1 Value iteration
Input: MDPM , a state s0 ∈ S and a precision ε > 0
Output: a value v such that |v − ValM(s)| ≤ ε

1: n← 0
2: v0(s) = RT (s) for all s ∈ S
3: while stopping criterion is not met do
4: for s ∈ S do
5: vn+1(s) = maxa∈A [R(s, a) +

∑
s′ P (s, a, s′)vn(s′)]

6: end for
7: n← n+ 1
8: end while
9: return 1

n
vn(s0)

1There could be more than one action in the set that maximizes the value. In that case, we can take any
one of the action. In other words, there could be multiple deterministic strategies that optimizes the expected
reward.

25

2.3 Probabilistic systems

Unfortunately, this has two problems:

For a state s, even though 1
n

ValnM(s) converges, optnM(s) may not converge; so it is
not possible to find an optimal or ε-optimal strategy.
For general MDPs, it is not always easy to define a good stopping condition.

The first problem does not arise in a specific class of MDPs called strongly aperiodic MDP.
A Markov decision process is strongly aperiodic if P (s, a, s) > 0 for all s ∈ S and a ∈ A.
One can make an MDP strongly aperiodic without changing the optimal expected average
reward and its optimal strategies [Put94, Section 8.5.4] with the following transformation:

Definition 2.9 (Aperiodic transformation)
For an MDP M = (S,A, P,R,RT , AP, L), we define a new MDP Mα =

(S,A, Pα, R,RT , AP, L) for 0 < α < 1, where for all s ∈ S and a ∈ A,
Pα(s, a, s) = α + (1− α)P (s, a, s) and
Pα(s, a, s′) = (1− α)P (s, a, s′) for all s′ 6= s.

Notice thatMα is strongly aperiodic.

Every finite path inM is also inMα. Thus, for a strategy σ̂ inMα, there is a σ inM
whose domain is restricted to the paths inM . The following theorem states that aperiodic
transformation does not change the optimal expected average reward and a strategy that
optimizes the expected average reward in the transformed MDP is also a strategy that
optimizes the expected average reward in the original MDP:

Theorem 2.6 ([Put94, Section 8.5.4])
Let M be an MDP. For α ∈ (0, 1), Mα is a new MDP generated by applying the
aperiodic transformation mentioned above. Then the set of memoryless strategies
that optimizes the expected average reward in Mα is the same as the set of memo-
ryless strategies the optimizes the expected average reward in M . Also from any s,
ValM(s) = ValMα(s).

For i ∈ N, let σiM refer to a deterministic memoryless strategy that maps every state s
inM to the first action of a corresponding optimal strategy for the expected total reward of
horizon i, so that σiM(s) = σi,∗M,s(s). For a large enough n, in a strongly aperiodic Markov
decision process, the strategy σnM is ε-optimal for the expected average reward:

26

2.3 Probabilistic systems

Theorem 2.7 ([Put94, Theorem 9.4.5])
For a strongly aperiodic Markov decision processM , it holds that

ValM(s) = lim
n→∞

[Valn+1
M (s)− ValnM(s)]

Moreover, for any ε > 0 there exists N ∈ N such that for all n ≥ N , for all s,

V alM(s, σnM) ≥ V alM(s)− ε .

End components For an MDP, an end component is a sub-MDP that is closed under
probabilistic choices and that is strongly connected.

Definition 2.10 (End component of an MDP)
For an MDP M = (S,A, P,R,RT), an end-component (EC) is a sub-MDP M ′ =

(T,A′, P ′, R′, R′T) such that
for all s ∈ T and a ∈ A, Supp(P (s, a)) ⊆ T , and,
the underlying graph ofM ′ is strongly connected, i.e., for any vertex q1 and q2

inM ′, there is a path from q1 to q2 and also from q2 to q1.
A maximal end-component (MEC) is an end component not included in another
end-component.

Wemay omit theM from the subscript from the previous notations if the MDP is clear
from the context.

2.3.5 Underlying game graph of an MDP

The underlying structure of an MDP can be seen as a game graph where the nondeter-
minism is controlled by player 0 and the probabilistic transitions are controlled by player 1.
Formally we define the game graph as follows:

Definition 2.11
For an MDPM = (S,A, P,R,RT , AP, L), we define the underlying game graph of
M as GM = (Q0]Q1, E,Q0, Q1) where

Q0 = S and Q1 = S × A.
For q0 = s0 ∈ Q0 and q1 = (s1, a1) ∈ Q1, (q0, q1) ∈ E if s0 = s1 and
a1 ∈ A(s0).

27

2.3 Probabilistic systems

For q1 = (s1, a1) ∈ Q1 and q0 = s0 ∈ Q0, (q1, q0) ∈ E if s0 ∈
Supp(P (s1, a1)).

An infinite path p = s0a0s1 . . . in M uniquely matches with an infinite path p′ =

q0q1 . . . in GM where for all i ∈ N, q2i = si and q2i+1 = (si, ai). We can extract a
deterministic strategy σM inM from a strategy σGM for player 0 inG. Formally, σM(p) = a

if σGM (p′) = (last(p), a) where p matches with p′.

Example 2.5 The underlying game graph of the MDP in Example 2.4 is described in
Figure 2.4. Player 0 vertices are denoted by circles and player 1 vertices are denoted by
boxes.

Moving (Moving, run)

(Moving, walk)

Fallen

(Fallen, stand)

Figure 2.4: A 2-player game

Consider the safety game where player 0 needs to avoid the vertex Fallen. A strategy
σGM for player 0 such that σGM (p) = (Moving, walk) if last(p) = Moving is winning for
player 0 from the state Moving.

This gives a deterministic strategy σM inM to avoid the state Fallen from the state
Moving where σM(p) = [walk 7→ 1] where last(p) = Moving. �

For ease of notation, for a deterministic strategy σ in M , we will also denote the
corresponding strategy for player 0 in the underlying 2-player game as σ. For a ∈ AP , let
Sa = {s ∈ S | L(s) = a}. For a ∈ AP , for a formula ϕ ∈ {♦a,�a,♦≤Ha,�≤Ha}, we
will write s |= ϕ if for all paths p ∈ PathsωM(s), p |= ϕ. Then for a state s0 ∈ S, we have
the following:

28

2.4 Distance-optimal strategy for reachability

The reachability game in GM with target set Sa is winning with strategy σGM if
s0 |= ♦a inMσ.
The finite reachability game in GM with target set Sa and horizon H is winning with
strategy σGM if s0 |= ♦≤Ha inMσ.
The safety game in GM with target set Sa is winning with strategy σGM if s0 |= �a in
Mσ.
The finite safety game in GM with target set Sa is winning with strategy σGM if
s0 |= �≤Ha inMσ.

2.3.6 Approximating MDPs

AnMDPM = (S,A, P,R,RT , AP, L) is said to structurally identical to anotherMDP
M ′ = (S,A, P ′, R,RT , AP, L) if for all s ∈ S and a ∈ A, we have that Supp(P (s, a)) =

Supp(P ′(s, a)). For two structurally identicalMDPsM andM with probability distribution
P and P ′ respectively, we say thatM is ε-approximate toM ′, denotedM ≈ε M ′, if for all
s ∈ S and a ∈ A: P (s, a) ∼ε P ′(s, a).

The following Lemma captures the idea that optimal strategy in an MDP M ′ that
approximate MDPM , would be a ε-optimal strategy in the original MDPM .

Lemma 2.2 (Adapted from [Cha12, Theorem 5])
Consider β ∈ (0, 1), and MDPsM andM ′ with set of state S such thatM ≈ηβ M ′

with ηβ ≤ β·pmin

8|S| , where pmin is the minimum probability appearing inM . For a state
s ∈ S, let σ be amemoryless deterministic strategy such thatValM ′(s, σ) = ValM ′(s).
Then, it holds that |ValM(s, σ)− ValM(s)| ≤ β.

2.4 Distance-optimal strategy for reachability

Given an MDP M = (S,A, P,R,RT , AP, L), let T ⊆ S. An objective we could be
interested in is to find a strategy that maximizes the probability to reach the target. Formally,
let PMσ ,s(♦T) denote the value PMσ(s |= ♦T), the probability to reach a state in T from
the state s in the Markov chainMσ. We want to find a strategy in

ΣM,s(♦T) = arg max
σ

PMσ ,s(♦T) .

29

2.4 Distance-optimal strategy for reachability

Example 2.6 We can represent the game Frozen Lake as a Markov decision process. In
this game, a robot moves in a slippery grid. It has to reach the target while avoiding holes
in the grid. Each state in the MDP represents the current position of the robot in the grid.
The states representing the target and the holes can be assumed to be sink state, i.e., the
robot cannot move to any other positions from this state. Part of the grid contains walls
and the robot cannot move into it. The frozen surface of the lake being slippery, when the
robot tries to move by picking a cardinal direction, the next state is determined randomly
over the four neighbouring positions of the robot, according to the following distribution
weights: the intended direction gets a weight of 10, and other directions that are not a wall
and not the reverse direction of the intended one get a weight of 12. There are no rewards,
and the terminal reward is 1 when the robot reaches the target and 0 otherwise. �

*

Figure 2.5: A 6× 6 layout for Frozen-Lake

Figure 2.5 shows a grid of size 6 × 6. Note that there is no strategy to reach the
target with probability 1. Consider a strategy σ1 where the robot moves to the cell right
of the starting cell and then move up to reach the target. We can have another strategy σ2

where the robot instead moves left and then moves upwards till the cell marked with ∗ and
then comes back to the initial position and then follows σ1. Although both strategies are
optimal in terms of probability to reach the target, σ2 takes more time to reach the target
in comparison to σ1. Thus, a more practical approach would be to find a strategy that
also minimizes the time needed to reach the target among the strategies that maximizes the
probability to reach the target.

Given a path ρ in an MCM = (S, P,AP, L) and T ⊆ S, we use len(ρ, T) to denote
the length of the shortest prefix of ρ that reaches one of the states of T , that is, len(ρ, T) = i

if ρ[i] ∈ T and for all j < i, ρ[j] /∈ T . Our objective is to find a strategy which minimizes
the conditional expectation EMσ ,s(len(ρ, T) | ρ |= ♦T) among the strategies in ΣM,s(♦T),
the strategies which maximize PMσ ,s(♦T).

2The distribution is then normalized so that weights sum up to 1.

30

2.4 Distance-optimal strategy for reachability

In this section, we will present how to get a such strategy. The algorithm works as
follows: we remove actions that does not contribute to maximizing the probability to reach
the target and then change the probabilities in the MDP as described in Definition 2.12.
This way, using any strategy that maximizes the probability to reach the set T in original
MDPM , the set T can be reached with probability 1 in the newMDPM ′. Then, in the new
MDPM ′, we calculate the strategy that minimizes the expected distance to the state T .

Before formally stating and proving the algorithm in Theorem 2.8, let us define some
notation that we will use in this section. We denote the actions that, when taken from a
state s, maximize the probability of reaching the goal states from s as the set

OptM = {(s, a) ∈ S × A | ValM(s, T) =
∑
s′

P (s, a, s′) · ValM(s′, T)} .

We use ΣOpt
M to denote the strategies that takes actions according to OptM , that is,

ΣOpt
M = {σ | ∀ρ, ∀a ∈ Supp(σ(ρ)); (last(ρ), a) ∈ OptM} .

Lemma 2.3
Given an MDP M = (S,A, P,R,RT , AP, L) and a set of states T ⊆ S, for every
state s ∈ S and for every action a, ValM(s, T) ≥∑s′ P (s, a, s′) · ValM(s′, T).

Proof Suppose, there is a state s ∈ S and an action a ∈ A such that ValM(s, T) <∑
s′ P (s, a, s′) · ValM(s′, T). Now, consider the strategy σ′ that takes action a from s and

then from paths s · as′ follows a strategy σs′ ∈ ΣM,s′(♦T) that maximizes the probability
to reach states in T from s′. Formally,

σ′(ρ) =

a if ρ = s

σs′(ρ
′) if ρ = s · as′ · ρ′

Then, PMσ′ ,s
(♦T) =

∑
s′ P (s, a, s′) · ValM(s, T) > ValM(s, T) which is a contradiction.

�

The following lemma states that the strategies thatmaximize the probability of reaching
the goal states always take ‘locally optimal’ actions.

Lemma 2.4
Given an MDP M = (S,A, P) and a set of states T ⊆ S, for every state s ∈ S,
ΣM,s(♦T) ⊆ ΣOpt

M .

Proof Suppose that there is a strategy σ∗ ∈ ΣM,s(♦T) where there exists a path ρ and an
action a ∈ Supp(σ∗(ρ)) such that (last(ρ), a) 6∈ OptM . Then, from Lemma 2.3 and the fact

31

2.4 Distance-optimal strategy for reachability

that (last(ρ), a) 6∈ OptM ,

ValM(last(ρ), T) >
∑
s′

P (last(ρ), a, s′) · ValM(s′, T)

and for every other action a′ 6= a,

ValM(last(ρ), T) ≥
∑
s′

P (last(ρ), a′, s′) · ValM(s′, T) .

Consider the strategy σ′′ which differs from σ∗ only on paths with ρ as prefix: on every path
having ρ as a prefix, σ′′ takes the next action according to a strategy σlast(ρ) ∈ ΣM,last(ρ)(♦T)

that maximizes the probability to reach states in T from last(ρ), whereas, it takes action
according to σ∗ on every other path. Formally,

σ′′(ρ′) =

σlast(ρ)(ρ
′′) if ρ′ = ρ · ρ′′

σ∗(ρ′) otherwise.

Note that, for every strategy σ,

PMσ ,ρ(♦T) =
∑
a′

(
σ(ρ, a′) ·

∑
s′

(P (last(ρ), a′, s′) · PMσ ,ρ·a′s′(♦T))

)
.

Also, PMσ∗ ,ρ·a′s′(♦T) ≤ ValM(s′, T) for all a′ ∈ A. Therefore,

PMσ∗ ,ρ(♦T) =
∑
a′

(
σ∗(ρ, a′) ·

∑
s′

(P (last(ρ), a′, s′) · PMσ∗ ,ρ·a′s′(♦T))

)
≤
∑
a′

(
σ∗(ρ, a′) ·

∑
s′

(P (last(ρ), a′, s′) · ValM(s′, T))

)
<
∑
a′

σ∗(ρ, a′) · ValM(last(ρ), T)

= ValM(last(ρ), T)

So, PMσ′′ ,ρ
(♦T) = PMσlast(ρ)

,last(ρ)(♦T) = ValM(last(ρ), T) > PMσ∗ ,ρ(♦T). Now note that,
for any strategy σ,

PMσ ,s(♦T) = PMσ ,s(ρ
′ |= ♦T ∧ ρ v ρ′) + PMσ ,s(ρ

′ |= ♦T ∧ ρ 6v ρ′)

= PMσ ,s(PathsωMσ
(ρ)) · PMσ ,ρ(♦T) + PMσ ,s(ρ

′ |= ♦T ∧ ρ 6v ρ′)

As σ∗(ρ′) = σ′′(ρ′) for any ρ′ such that ρ v ρ′,

PMσ∗ ,s(PathsωMσ∗
(ρ)) = PMσ′′ ,s

(PathsωMσ′′
(ρ)) .

and
PMσ∗ ,s(ρ

′ |= ♦T ∧ ρ 6v ρ′) = PMσ′′ ,s
(ρ′ |= ♦T ∧ ρ 6v ρ′) .

Then PMσ∗ ,s(♦T) < PMσ′′ ,s
(♦T), which cannot be true as σ∗ is an optimal strategy. �

We define a transformation in the following definition where we create an MDP with

32

2.4 Distance-optimal strategy for reachability

by removing states from which the target set T is not reachable. We also remove an action
a from state s if (s, a) is not in OptM . Furthermore, we also redefine the probability
distribution in a specific way.

Definition 2.12
We define a tranformation as follows: For an MDP M = (S,A, P,R,RT , AP, L)

and T ⊆ S, we defineM ′ = (S ′, A, P ′, R,RT , AP, L) where

S ′ = {s ∈ S | ValM(s, T) > 0}
and P ′ is constructed from P in the following way:

P ′(s, a, s′) =

P (s, a, s′) · Val(s′,T)
Val(s,T)

if (s, a) ∈ OptM

⊥ otherwise.

Note thatM ′ = (S ′, A, P ′) is well-defined as P ′ is indeed a probability distribution as∑
s′ P

′(s, a, s′) =
∑

s′ P (s, a, s′) · Val(s′,T)
Val(s,T)

= Val(s,T)
Val(s,T)

= 1.

From the construction ofM ′, we have that the set of strategies inM ′ is ΣOpt
M . For ease

of notation, for a strategy σ ∈ ΣOpt
M , we write PMσ ,s as Pσ,s and PM ′σ ,s as P

′
σ,s. Similarly, we

write EMσ ,s as Eσ,s and EM ′σ ,s as E
′
σ,s.

In Algorithm 2, we present how to get a strategy which minimizes the conditional
expectation EMσ ,s(len(ρ, T) | ρ |= ♦T) among the strategies in ΣM,s(♦T).

Algorithm 2 Calculating distance-optimal strategy for reachability
Require: M = (S,A, P), T ⊆ S

1: Create MDPM ′ = (s′, A, P ′) according to Definition 2.12.
2: Find a strategy σ∗ that minimizes the expected distance inM ′:

σ∗ ∈ arg min
σ

E′σ,s0(len(ρ, T)) .

3: return σ∗.

To prove the correctness of Algorithm 2, we use following lemmata.

Lemma 2.5
For any strategy σ ∈ ΣOpt

M , s0 ∈ S ′ and a path ρ = s0a0s1 . . . sn ∈ (S ′ \ T · A)∗T ∩
PathsM(s0, σ),

P′σ,s0(PathsωM ′σ(ρ)) =
Pσ,s0(PathsωMσ

(ρ))

ValM(s0)
.

33

2.4 Distance-optimal strategy for reachability

Proof As sn ∈ T , ValM(sn, T) = 1. So,

P′σ,s0(PathsωM ′σ(ρ)) =
n−1∏
i=0

σ(ρ|i, ai) · P ′(si, ai, si+1)

=
n−1∏
i=0

σ(ρ|i, ai) · P (si, ai, si+1) · ValM(si+1, T)

ValM(si, T)

= Pσ,s0(PathsωMσ
(ρ)) · ValM(sn)

ValM(s0)

=
Pσ,s0(PathsωMσ

(ρ))

ValM(s0)

�

Lemma 2.6
For any strategy σ ∈ ΣOpt

M and s0 ∈ S ′, we have: P′σ,s0(♦T) =
Pσ,s0 (♦T)

ValM (s0)
.

Proof Note that, PathsM ′(s0) ∩ (S ′ \ T)∗T = PathsM(s0) ∩ (S \ T)∗T , as in M ′, we
only removed states from which the states in T are not reachable. So, using the result from
Lemma 2.5, we get:

P′σ,s0(♦T) =
∑

p∈PathsM′ (s0)∩(S′\T)∗T

PM ′,s0(PathsωM ′σ(p))

=
∑

p∈PathsM (s0)∩(S\T)∗T

PM,s0(PathsωMσ
(p))

ValM(s0)

=
Pσ,s0(♦T)

ValM(s0)

�

Corollary 2.1
For s0 ∈ S ′, σ ∈ ΣM,s0(♦T) if and only if P′σ,s0(♦T) = 1.

Thus, for s0 ∈ S ′, and any strategy σ ∈ ΣM,s0(♦T), E′σ,s0(len(ρ, T)) 6=∞ if and only
if σ ∈ ΣM,s0(♦T). Now we show the relation between expected conditional length inM ′

andM :

Lemma 2.7
For any strategy σ ∈ ΣM,s(♦T), s0 ∈ S ′,

E′σ,s0(len(ρ, T)) =
Eσ,s0(len(ρ, T) | ρ |= ♦T)

ValM(s0)
.

34

2.5 Multi-armed bandit problem

Proof Note that, PathsM ′(s0) ∩ (S ′ \ T)∗T = PathsM(s0) ∩ (S \ T)∗T as in M ′, we
only removed states from which the states in T are not reachable. Using the result from
Lemma 2.5, we get:

E′σ,s0(len(ρ, T)) =
∑

p∈PathsM′ (s0)∩(S′\T)∗T

len(p, T) · P′σ,s0(PathsωM ′σ(p))

=
∑

p∈PathsM′ (s0)∩(S′\T)∗T

len(p, T) · Pσ,s0(PathsωMσ
(p))

ValM(s0)

=
Eσ,s0(len(ρ, T) | ρ |= ♦T)

ValM(s0)

�

Now, following theorem proves the correctness of Algorithm 2:

Theorem 2.8
For s0 ∈ S ′, let σ∗ be a strategy inM ′ that minimizes E′σ,s0(len(ρ, T)). Then,

1. Pσ∗,s0(♦T) = ValM(s0).
2. Eσ∗,s0(len(ρ, T) | ρ |= ♦T) = min

σ∈ΣM,s0 (♦T)
Eσ,s0(len(ρ, T) | ρ |= ♦T)

Proof We know that E′σ,s0(len(ρ, T)) 6= ∞ if and only if σ ∈ ΣM,s0(♦T). So σ∗ ∈
ΣM,s0(♦T). Therefore, we have Pσ∗,s0(♦T) = ValM(s0).

From Lemma 2.7, we get Eσ,s0(len(ρ, T) | ρ |= ♦T) = E′σ,s0(len(ρ, T)) ·ValM(s0) for
any σ ∈ ΣM,s0(♦T). Then,

arg min
σ∈ΣM,s0 (♦T)

E′σ,s0(len(ρ, T)) = arg min
σ∈ΣM,s0 (♦T)

E′σ,s0(len(ρ, T)) · ValM(s0)

= arg min
σ∈ΣM,s0 (♦T)

Eσ,s0(len(ρ, T) | ρ |= ♦T)

So, Eσ∗,s0(len(ρ, T) | ρ |= ♦T) = min
σ∈ΣM,s0 (♦T)

Eσ,s0(len(ρ, T) | ρ |= ♦T). �

2.5 Multi-armed bandit problem

The name of the problem comes from imagining a scenario where a gambler is in
a casino standing in front of a row of slot machines (sometimes known as “one-armed
bandits”), who has to decide which machines to play in order to maximize their payoff.
We are interested in this problem because it forms the basis of the theoretical analysis of

35

2.5 Multi-armed bandit problem

Monte Carlo tree search algorithms, an online heuristic approach to find good strategies in
an MDP.

Let A denote a finite set of actions. For each a ∈ A, let (xa,t)t≥1 be a sequence of
random rewards associated to a. They correspond to successive plays of action a, and for
every action a and every t ≥ 1, let xa,t be drawn with respect to a probability distribution
Da,t over [0, 1]. We denote by Xa,t the random variable associated to this drawing. In
a fixed distributions setting (the classical bandit problem), every action is associated to a
fixed probability distribution Da, so that Da,t = Da for all t ≥ 1.

The bandit problem [Mun14] consists of a succession of steps where the player selects
an action and observes the associated reward, while trying to maximise the cumulative
gains. For example, selecting action a, then b and then a again would yield the respective
rewards xa,1, xb,1 and xa,2 for the first three steps, drawn from their respective distributions.

Let the regret Rn denote the difference, after n steps, between the optimal expected
reward maxa∈A E[

∑n
t=1Xa,t] and the expected reward associated to our action selection.

The goal is to minimise the long-term regret when the number of steps n increases. As the
underlying reward distributions are unknown, potential rewards must be estimated based
on past observations. This leads to the exploitation-exploration dilemma: one needs to
balance between exploiting the action currently believed to be optimal and exploring other
actions that is appearing sub- optimal but may turn out to be better in the long run.

In [LR85], it was shown that for a large class of reward distributions, there exists no
strategy for selecting the correct arm with a regret that grows slower than O(log n). A
strategy is said to resolve the exploration- exploitation tradeoff if its regret growth rate is
within a constant factor of this best possible regret rate.

The algorithmUCB1 (upper confidence bound 1) of [ACF02] offers a practical solution
to this problem for the stationary bandit case.For an action a and n ≥ 1, let xa,n =
1
n

∑n
t=1 xa,t denote the average payoff obtained from the first n plays of a. Moreover, for a

given step number t let ta denote how many times action a was selected in the first t steps.
The algorithm UCB1 chooses, at step t+ 1, the action a that maximizes xa,ta + ct,ta , where
ct,ta is defined as

√
2 ln t
ta

if ta > 0, and as +∞ otherwise. This procedure enjoys the regret
bound of O(log n) [ACF02].

36

2.5 Multi-armed bandit problem

2.5.1 Non-stationary Bandit Problem

We will make use of an extension of these results to the general setting of non-
stationary bandit problems, where the distributions Da,t are no longer fixed with respect
to t. This problem has been studied in [KS06], and results were obtained for a class of
distributions Da,t that respect assumptions referred to as drift conditions.

For a fixed n ≥ 1, let Xa,n denote the random variable obtained as the average of the
random variables associated with the first n plays of a. Let µa,n = E[Xa,n]. We assume
that these expected means eventually converge, and let µa = limn→∞ µa,n. We also assume
the following conditions on the sequences of random variables:

Definition 2.13 (Drift conditions)
For all a ∈ A, the sequence (µa,n)n≥1 converges to some value µa.
There exists a constant Cp > 0 and an integer Np such that for n ≥ Np and
any δ > 0, ∆n(δ) = Cp

√
n ln(1/δ), the following bounds hold:

P
[
nXa,n ≥ nµa,n + ∆n(δ)

]
≤ δ ,

P
[
nXa,n ≤ nµa,n −∆n(δ)

]
≤ δ .

We define δa,n = µa,n − µa. Then, µ∗, µ∗n, δ∗n are defined as µj , µj,n, δj,n where j is
the optimal action.3 Moreover, let ∆a = µ∗ − µa.

As δa,n converges to 0 by assumption, for all ε > 0 there exists N0(ε) ∈ N, such that
for t > N0(ε), then 2|δa,t| ≤ ε∆a and 2|δ∗t | ≤ ε∆a for all all suboptimal actions a ∈ A.

We recall the results of [KS06], and provide an informal description of those results.
Consider using the algorithm UCB1 on a non-stationary bandit problem satisfying the drift
conditions, with ct,ta = 2Cp

√
ln t
ta

for some constant Cp.

Let Ta(n) denote number of times action a has been played at time n. Let Xn =∑
a∈A

Ta(n)
n
Xa,Ta(n) denote the global average of payoffs received up to time n. Then, one

can bound the difference between µ∗ and Xn:
3It is assumed for simplicity that a single action a is optimal, i.e. maximises E[Xa,n] for n large enough.

37

2.6 Monte Carlo tree search

Theorem 2.9 ([KS06, Theorem 2])
Under the drift conditions of Definition 2.13, it holds that

|E[Xn]− µ∗| ≤ |δ∗n|+O
(|A|(Cp2 lnn+N0(1/2))

n

)
.

This is the main theoretical guarantee obtained for the optimality of UCB1. Also for
any action a, the authors state a lower bound for the number of times the action is played.

Theorem 2.10 ([KS06, Theorem 3])
Under the drift conditions of Definition 2.13, there exists some positive constant ρ
such that after n iterations for all action a, Ta(n) ≥ dρ ln(n)e.

The authors also prove a tail inequality similar to the one described in the drift
conditions, but on the random variable Xn instead of Xa,n. This will be useful for
inductive proofs later on, when the usage of UCB1 is nested so that the global sequence
Xn corresponds to a sequenceXb,n of an action b played from a previous state of the MDP.

Theorem 2.11 ([KS06, Theorem 4])

Fix an arbitrary δ > 0 and let ∆n = 9
√

2n ln(2/δ). Then for big enough n, the
following holds true:

P[nXn ≥ nE[Xn] + ∆n(δ)] ≤ δ

P[nXn ≤ nE[Xn]−∆n(δ)] ≤ δ

Finally, it is shown that the probability of making the wrong decision (choosing a
suboptimal action) converges to 0 as the number of plays n grows large enough.

Theorem 2.12 ([KS06, Theorem 5])
Let It be the action chosen at time t, and let a∗ be the optimal action. Then
limt→∞ Pr(It 6= a∗) = 0.

2.6 Monte Carlo tree search

In heuristic search, froma state s, a tree of paths are created to approximate the expected
total reward ValHM and corresponding optimal action optHM . Conventional heuristic search

38

2.6 Monte Carlo tree search

algorithms are based on Monte Carlo methods which estimate action values from current
state by simulating many paths that start with each possible actions. When the action
value estimates are accurate enough, the action enough or a specified budget (of number of
iterations or time) is exhausted, the action with the highest estimate is returned.

We specifically focus on the Monte Carlo Tree Search (MCTS) algorithm [Bro+12].
Note that rewards in the MDP M are bounded as there are finitely many paths of length
at most H , with rewards in R. Thus, for the sake of simplicity we assume without loss of
generality that for all paths p of length at most H the total reward RewardM(p) belongs to
[0, 1].

Given an initial state s0, MCTS is an iterative process that incrementally constructs
a search tree rooted at s0 describing paths of M and their associated values. An iteration
constructs a path inM by following a decision strategy to select a sequence of nodes in the
search tree. When a node that is not part of the current search tree is reached, the tree is
expanded with this new node, whose expected reward is approximated by simulation. This
value is then used to update the knowledge of all selected nodes in backpropagation.

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

Figure 2.6: Already-built part of the search tree at the start of iteration

In the search tree, each node represents a path. For a node p and an action a ∈ A,
let children(p, a) be a list of nodes representing paths of the form p · as′ where s′ ∈
Supp(P (last(p), a)). For each node we store a value value(p) computed for node p, meant
to approximate Val

H−|p|
M (last(p)). For each node p and action a, we also store the value

39

2.6 Monte Carlo tree search

value(p, a) which is meant to approximate the value

R(last(p), a) +
∑
s′

P (last(p), a, s′)Val
H−|p|−1
M (s′) .

We also store a counter count(p) that keeps track of the number of iterations that selected
node p and count(p, a) that selected the action a from p. We add subscripts i ≥ 1 to these
notations to denote the number of previous iterations, so that valuei(p) is the value of p
obtained after i iterations of MCTS, among which p was selected counti(p) times. We
also define totali(p) and totali(p, a) as shorthand for respectively valuei(p)× counti(p) and
valuei(p, a)× counti(p, a).

Each iteration consists of three phases. Let us describe these phases at ith iteration.

Selection phase Starting from the root node, MCTS descends through the existing search
tree by choosing actions based on the current values and counters and by selecting next
states stochastically according to the MDP. This continues until reaching a node q, either
outside of the search tree or at depth H . In the former case, the simulation phase is called
to obtain a value valuei(q) that will be backpropagated along the path q. In the latter case,
we use the exact value valuei(q) = RT (last(q)) instead.

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

Figure 2.7: MCTS traverses through the existing search tree till it finds a new node and
adds the new node to the tree during selection phase.

The action selection process needs to balance between the exploration of new paths

40

2.6 Monte Carlo tree search

and the exploitation of known, promising paths. A popular way to balance both is the upper
confidence bound for trees (UCT) algorithm [KS06], that interprets the action selection
problem of each node of the MCTS tree as a bandit problem, and selects, for some constant
C, an action a∗ in the set

arg max
a∈A

[
valuei−1(p, a) + C

√
ln (counti−1(p))

counti−1(p, a)

]
.

Simulation phase In the simulation phase, the goal is to get an initial approximation for
the value of a node p, that will be refined in future iterations of MCTS.

Classically, a sampling-based approach can be used, where one computes a fixed
number c ∈ N of paths p · p′ in PathsHM(p). Then, one can compute the value of the node
by averaging these values by

valuei(p) =
1

c

∑
p′

RewardM(p′) ,

and fix counti(p) to 1. Usually, the samples are derived by selecting actions uniformly at
random in the MDP.

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v4

a1
v1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

Figure 2.8: MCTS approximates the value of the newly-added node by sampling paths
during simulation phase.

Backpropagationphase From the value valuei(p)obtained at a leaf node p = s0a0s1 . . . sh

at depth h in the search tree, let rewardi(p|k) =
∑h−1

l=k R(sl, al) + valuei(p) denote the re-

41

2.6 Monte Carlo tree search

ward associated with the path from node p|k to p in the search tree. For k from 0 to h− 1

we update the values according to

valuei(p|k) =
totali−1(p|k) + rewardi(p|k)

counti(p|k)
.

Similarly, the value valuei(p|k, ak) is updated based on totali−1(p|k, ak), rewardi(p|k) and
counti(p|k, ak) with the similar formula:

valuei(p|k, ak) =
totali−1(p|k, ak) +

∑h−1
l=k R(sl, al) + valuei(p)

counti(p|k, ak)
.

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v′4

a1

v′1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

v

Figure 2.9: The value obtained at the new node is used to update the values in the nodes
above in the search tree during backpropagation phase.

Aftern iterations ofMCTSalgorithms at state s0, the action thatmaximizes valuen(s0, a)

is returned.

The MCTS algorithm proposed in [KS06] was presented for a version where MCTS
was called recursively until leaves were reached, as opposed to the sampling-based approach
that we discussed before. This algorithm enjoys the following guaranties:

Theorem 2.13
[KS06, Theorem 6] Consider an MDP M , a horizon H and a state s0. Let
Vn(s0) (resp. Vn(s0, a)) be a random variable that represents the value valuen(s0)

(resp. valuen(s0, a)) at the root of the search tree after n iterations of the MCTS

42

2.7 Task systems

algorithm onM . Then,
|E[Vn(s0)]− ValHM(s0)| is bounded by O((lnn)/n).
The failure probability P[arg maxa Vn(s0, a) 6⊆ optHM(s0)] converges to zero as
n tends to infinity.

The simulation-based approach has become more standard in practice and the same
guaranties can be obtained4 in the simulation-based approach as in the version mentioned
in [KS06].

2.7 Task systems

A task system [GGR18] Υ = ((τi)i∈[n], F,H) is composed of a set of n pre-emptible5

tasks (τi)i∈[n] partitioned into a set F of soft tasks and a set H of hard tasks. Time is
assumed to be discrete and measured e.g. in CPU ticks.

Each task τi generates an infinite number of instances τi,j , called jobs for j ∈ N. Jobs
generated by both hard and soft tasks are equipped with deadlines, which are relative to
the respective arrival times of the jobs in the system. The computation time requirements
of the jobs follow a discrete probability distribution, and are unknown to the scheduler, but
upper bounded by their relative deadline. The tasks are assumed to be independent and
generated stochastically: the occurrence of a new job of one task does not depend on the
occurrences of jobs of other tasks, and both the inter-arrival and computation times of jobs
are independent random variables.

Formally a task can be defined as follows:

Definition 2.14 (Task)
A task τ is a tuple 〈C,D,A〉, where:

C is a discrete probability distribution on the (finitely many) possible compu-
tation times of the jobs generated by τ ;
D ∈ N is the deadline of all jobs generated by τ which is relative to their
arrival time; and

4This can be observed as a direct implication of Theorem 5.1 which we will discuss in Section 5.1.
5This means the scheduler can temporarily interrupt a running task, and can resume it at a later time.

43

2.7 Task systems

A is a discrete probability distribution on the (finitely many) possible inter-
arrival times of the jobs generated by τ .

Jobs generated by hard tasks must complete before their respective deadlines. For
jobs generated by soft tasks, deadline misses result in a penalty. This is modelled by a cost
function cost : F → Q≥0 that associates to each soft task τj a cost c(j) that is incurred
every time a job of τj misses its deadline. The scheduling problem consists in finding a
scheduler, i.e. a strategy for the scheduler that associates, to all CPU ticks, a task that must
run at that moment, in order to avoid deadline misses by hard tasks and to minimize the
mean cost of deadline misses by soft tasks.

It is assumed that, for a task τ = 〈C,D,A〉, max(Supp(C)) ≤ D ≤ min(Supp(A)).
Hence, at any point in time, there is at most one job per task in the system. Also, when a
new job of some task arrives at the system, the deadline for the previous job of this task
is already over. Finally, we assume that the task system is schedulable for the hard tasks,
meaning that it is possible to guarantee that jobs associated to hard tasks never miss their
deadlines.

Given a task system Υ = ((τi)i∈[n], F,H) with n tasks, the structure of the task system
Υ is ((struct(τi))i∈[n], F,H) where struct(〈C,D,A〉) = (〈Supp(C), D, Supp(A)〉).

We denote byCmax andAmax resp. the maximum computation time, and the maximum
inter-arrival time of a task in Υ. Formally, Cmax = max(

⋃
i∈[n] Supp(Ci)), and Amax =

max(
⋃
i∈[n] Supp(Ai)). We also let D = maxi∈[n](|Supp(Ai)|). We denote by |Υ| the

number of tasks in the task system Υ.

Consider two task systems Υ1 = ((τ 1
i)i∈[n], F,H), and Υ2 = ((τ 2

i)i∈[n], F,H), with
|Υ1| = |Υ2|, τ ji = 〈Cj

i , D
j
i , A

j
i 〉 for all i ∈ [n] and j ∈ [2]. The two task systems Υ1

and Υ2 are said to be ε-close, denoted Υ1 ≈ε Υ2, if they have the same structure and the
distributions are ε-close, i.e.,

struct(Υ1) = struct(Υ2),
for all i ∈ [n], we have A1

i ∼ε A2
i , and

for all i ∈ [n], we have C1
i ∼ε C2

i .

44

2.7 Task systems

2.7.1 MDP for the scheduling problem

Given a system Υ = {τ1, τ2, . . . , τn} of tasks, we describe the modelling of the
scheduling problem by anMDPMΥ. A state in theMDP encodes the following information
about each task τi:

a distribution ci over the job’s possible remaining computation times;
the time di up to its deadline; and
a distribution ai over the possible times up to the next arrival of a new job.

For a state s =
(
(c1, d1, a1) . . . (cn, dn, an)

)
, let act(s) = {i | ci(0) 6= 1 and di > 0} be the

tasks that have an active job in s. Let mis(s) = {i | ci(0) = 0 and di = 0} be the tasks
that have missed a deadline in s.

The possible actions from state s are to schedule an active task from act(s) or to idle
the CPU (represented by ε) for one CPU tick. The probability distribution arises from the
valid moves available for the task generator:

stay idle (ε),
finish the current job without submitting a new one, (fin)
submit a new job while the previous one is already finished (sub),
submit a new job and kill the previous one, in the case of a soft task (killANDsub).

Whenever a job by a soft task misses its deadline, it incurs a cost. This is represented
as a negative reward. Whenever a hard task misses its deadline, the MDP reaches a sink
state marked with ⊥. Our objective is to find a strategy that

avoids the state marked by ⊥, and
minimizes the average mean payoff reward

Example 2.7 Consider a system with the following tasks:

one hard task τh = 〈Ch, 2, Ah〉 such that Ch(1) = 1 and Ah(3) = 1; and
one soft task τs = 〈Cs, 2, As〉 such that Cs(1) = 0.4, Cs(2) = 0.6, and As(3) = 1;
and the cost function c such that c(τs) = 10.

This means that both tasks will submit their first job at time 0, both with deadlines at time
0 + 2 = 2. Then, τh,1 will have a computation time of 1, while τs,1 will have a computation
time which is either 1 (with probability 0.4) or 2 (with probability 0.6). Both tasks will

45

2.7 Task systems

submit new jobs τh,2 and τs,2 at time 0 + 3 = 3. Each time a job of τs misses its deadline, a
penalty of 10 will be incurred.

Figure 2.10 presents part of the MDP ΓΥ built from the set of tasks τ = {τh, τs}.

Ĉ D̂ Â

τh 1 2 3
τs [1:.4,2:.6] 2 3

τs | 0 τh | 0 ε | 0

Ĉ D̂ Â

τh 1 1 2
τs 0 1 2

Ĉ D̂ Â

τh 1 1 2
τs 1 1 2

Ĉ D̂ Â

τh 0 1 2
τs [1:.4,2:.6] 1 2

Ĉ D̂ Â

τh 1 1 2
τs [1:.4,2:.6] 1 2

(ε,fin) .4 (ε, ε) .6 (fin, ε) (ε, ε)

Ĉ D̂ Â

τh 0 0 1
τs 0 0 1

τh | 0

(fin, ε)

ε | 0

(sub, sub)

Ĉ D̂ Â

τh 0 0 1
τs 1 0 1

τh | 0
τs | 0 ε | 0

(fin, ε)

ε | 0

(sub, killANDsub)

ε | −10

τs | 0 ε | 0

⊥

ε | 0

τs | 0 τs | 0

ε | 0

Figure 2.10: Part of the MDP for the task system in Example 2.7

The probabilistic transitions are labelled with a tuple denoting the task generators
action corresponding to task τh and τs. From the initial state, the scheduler can schedule
τs for one CPU tick, or schedule τh for one CPU tick or stay idle. If it schedules τs, then
with probability 0.4, τs finishes and with probability 0.6, it would still have 1 CPU tick
computation time left. If τs misses its deadline, a reward of −10 is added. When τh misses
its deadline the MDP reaches a sink state marked with ⊥. �

2.7.2 Safe region in a task system

We can consider the underlying game graph of the MDP MΥ. There we have a
safety game between Scheduler (player 0) and TaskGen (player 1) where the objective for
Scheduler is to avoid the state marked with ⊥. We say a state s is safe if Scheduler has a
winning strategy from s in the safety game. For a state s, safe(s) is the set of actions a such
that (s, a) ∈ σ(s) where σ is the most general strategy for Scheduler in the safety game.

46

2.7 Task systems

We consider the rest of the actions unsafe.

Given an initial state sinit in the MDPMΥ, we let the safe region ofMΥ be the MDP
M safe

Υ obtained fromMΥ by applying the following transformations:

remove fromMΥ all unsafe actions;
remove fromMΥ all vertices and edges that are not reachable from sinit.

Note that M safe
Υ is guaranteed to be non-empty as the task system Υ is guaranteed to

be schedulable for its hard tasks by hypothesis. In the following lemma, we prove that this
safe region is a single maximal end component:

Lemma 2.8
Let Υ = ((τi)i∈I , F,H) be a task system and letM safe

Υ be the safe region of its MDP.
ThenM safe

Υ is a single maximal end-component.

Proof Observe that, since we want to prove that the whole MDPM safe
Υ corresponds to an

MEC, we only need to show that the underlying graph of M safe
Υ is strongly connected. In

order to show the strongly connected property, we fix a vertex v controlled by Scheduler,
and show that there exists a path in M safe

Υ from v to vinit. By construction of M safe
Υ , v is

reachable from vinit, this entails that all vertices v′ in the graph are also reachable from v.

Let vinit = v0, v
′
0, v1, v

′
1, · · · , v′n−1, vn = v be the path p leading to v, where all vertices

vj belong to Scheduler, and all v′j are vertices that belong to TaskGen in the game graph.
Then, from path p, we extract, for all tasks τi the sequence of actual inter-arrival times
σi = ti(1), ti(2), . . . , ti(ki) defined as follows: for all 1 ≤ j ≤ ki, ti(j) ∈ Supp(Ai) is
the time elapsed (in CPU ticks) between the arrival of the (j − 1)th job and the jth job
of task i along p (assuming the initial release occurring in the initial state vinit is the 0-th
release). In other words, letting T i(j) =

∑j
k=1 t

i(k), the jth job of τi is released along
p on the transition between v′T i(j−1) and vT i(j). Observe thus that all tasks i ∈ [n] are in
the same state in vertex vinit and in vertex vT i(j), i.e. the time to the deadline, and the
probability distributions on the next arrival and computation times are the same in vinit and
vT i(j). However, the vertices vT i(j) can be different for all the different tasks, since they
depend on the sequence of job releases of τi along p. Nevertheless, we claim that p can be
extended, by repeating the sequence of arrivals of all the tasks along p, in order to reach a
vertex where all tasks have just submitted a job (i.e. vinit). To this aim, we first extend, for
all tasks i ∈ [i], σi into σ′i = σi, t

i(ki + 1), where ti(ki + 1) ∈ Supp(Ai) ensures that the
ki + 1 arrival of a τi occurs after v.

47

2.8 Artificial neural networks

For all i ∈ [n], let ∆i denote
∑ki+1

j=1 ti(j), i.e. ∆i is the total number of CPU ticks
needed to reach the first state after v where task i has just submitted a job (following the
sequence of arrival σ′i defined above). Further, let ∆ = lcm(∆i)i∈[n], the least common
multiple of the ∆i values. Now, let p′ be a path in M safe

Υ that respects the following
properties:

1. p is a prefix of p′;
2. p′ has a length of ∆ CPU ticks;
3. p′ ends in a Scheduler vertex v′; and
4. for all tasks i ∈ [n]: τi submits a job at time t along p′ iff it submits a job at time

(t mod ∆i) along p.

Observe that, in the definition of p′, we do not constrain the decisions of Scheduler after
the prefix p. First, let us explain why such a path exists. Observe that the sequence of task
arrival times is legal, since it consists, for all tasks i, in repeating ∆/∆i times the sequence
σ′i of inter-arrival times which is legal since it is extracted from path p (remember that
nothing that Scheduler player does can restrict the times at which TaskGen introduces new
jobs in the system). Then, since Υ is schedulable, we have the guarantee that all Scheduler
vertices inM safe

Υ have at least one outgoing edge. This is sufficient to ensure that p′ indeed
exists. Finally, we observe p′ visits v (since p is a prefix of p′), and that the last vertex v′ of
p′ is a Scheduler vertex obtained just after all tasks have submitted a job, by construction.
Thus, v′ = vinit, and we conclude that, from all Scheduler vertex v which is reachable from
vinit, one can find a path inM safe

Υ that leads back to vinit.

This reasoning can be extended to account for the TaskGen vertices: one can simply
select any successor v of v, and apply the above reasoning from v to find a path going back
to vinit. Hence, the graph is strongly connected. �

2.8 Artificial neural networks

Artificial neural networkmodels or neural networks or NNs are used to learn a function
from a dataset of known inputs and outputs. This can be a classification problem, where
the outputs are discrete labels : for example, predicting whether the input is picture of a
cat or a dog given an image. This can also be a regression problem, where the outputs
are continuous values: for example, predicting the temperature of tomorrow given today’s
meteorological data.

48

2.8 Artificial neural networks

A neural network can be viewed as a computational graph6 which is represented by
a number of layers. The layer in the middle are called hidden layers. A neural network
contains some parameters called weights which are initially assigned random values. It
takes the output y of the previous layer and use the weights wij and bj to compute the input
x of the next layer where xj =

∑
iwijyi + bj . Each nodes in the layer has a non-linear

activation function that is applied on the input (otherwise the network would only be able
to learn linear functions). Common non-linear functions that are used for activation are :

Sigmoid function : f(x) = 1
1+e−x

.
Rectified Linear Unit or ReLU : f(x) = max(0, x).

The data is generally stored in multidimensional arrays called tensors. The process of
transforming raw data into numerical features in tensor format so that it is easily processable
by the network is called feature extraction. The data is divided into three disjoint sets: one
is used solely for training the data, one for validation, i.e. to monitor the training procedure
and another for testing the neural network.

Training a neural network would mean finding a set of values for the weights in this
network such that it correctly maps inputs to the associated outputs. To measure how good
the neural network is, functions called loss functions are used which computes a distance
score based on the values predicted by the network Y and the expected output Ŷ . For
example, the mean squared error is often used as a loss function:

MSE(Y, Ŷ) =
1

n

n∑
i=1

(
Yi − Ŷi

)2

The backpropagation algorithm decides how much to update a weights wij by looking
at the error E. This is done by following the update rule called gradient descent [Cau+47;
Lem12]:

wij ← wij − α
dE

dwij

where α is a positive constant called learning rate. Intuitively, it means if error decreases
when the weight is increased i.e. dE

dwij
< 0, the weight should increase. And otherwise, the

weight should decrease. In practice, stochastic variants of gradience descent algorithm like
ADAM [KB14] is used for faster computation.

At the end of the training, quality of the network is determined based on its error rate

6A computational graph is a directed graph where the nodes correspond to mathematical operations or
variables.

49

2.8 Artificial neural networks

on the test dataset. Sometimes, the network overfits, i.e., it shows low error rate on the
training dataset but not on the test dataset. To avoid this, dropout [Hin+12] is often used
where nodes in the neural network are omitted with a given probability called dropout rate.

2.8.1 Convolutional neural networks

In a convolutional neural network or CNN, each data-point in the dataset is divided
in number of channels where each channel in a 2-dimensional matrix. Often the multidi-
mensional tensors are flattened to create a 1-dimensional vector easily processable by the
networks.

In a CNN, the weights are organized into sets of 3-dimensional structural units, known
as filters or kernels. The convolution operation places the filter at each possible position in
the input, and performs dot products between the weights in the filter and the values in the
matching grid of the same size in the input. Pooling operations are used to reduce the size
of the input by applying the maximum or average function in smaller regions of the input.
For example, max-pooling of size 3 can take every 3× 3 grid in the input and reduce them
to cells containing the maximum value among these 9 values. CNN also contains layers
performing linear transformations called dense layers.

2.8.2 Hyperparameter tuning

Hyperparameter tuning is often used to choose the optimal architecture for the neural
network. This involves tuning for the following hyperparameters:

number of layers,
size of the hidden layers,
dropout rate,
activation functions,
learning rate etc.

The optimal hyperparameters are searched in a given search space either by exhaustive
searching or by randomized optimization [BB12].

50

Chapter 3

Formal methods in decision-time planning

When an MDP is too large to be analysed offline using formal algorithms, an online
approach can be taken. This works as follows: after encountering a new state s, an action
a that is “good” for reward optimization starting from the state is computed. This action
a is taken from the state s and the state of the MDP evolves to state s′ according to the
probability distribution in the MDP. Then the same process is repeated from this new state
s′. This is called decision-time planning [SB18, Chapter 8.8].

In this chapter, we consider approaches that can be used in decision-time planning,
specifically using a receding horizon H . In this case, the controller tries to find an optimal
action from a state by finding an optimal strategy in the MDP unfolding of depth H from
the current state. Heuristic search algorithms like Monte Carlo tree search (described in
Section 2.6), can be used during decision time planning. Another approach that can be
used while planning is to model check in a smaller MDP which could be an abstraction of
the larger one or could be created by pruning the larger MDP. For this, in Section 3.2, we
define abstraction of MDPs using bisimulation. Also in Section 3.3, we define the notion
of pruning an MDP using a non-deterministic strategy.

3.1 Receding horizon control

In receding horizon control or model predictive control, a horizon H ∈ N is fixed.
From the current state s of the MDP, the algorithm finds optHM(s), the first action of the
strategy that maximizes the expected total reward in that horizon. When this action is
identified, it is played from s and the state evolves to a new state s′ according to the
probability distribution in the MDP. Then, the same process is repeated from s′.

Formally, for a horizon H , it plays according to the strategy σHM , the deterministic
memoryless strategy that maps every state s inM to the first action of an optimal strategy
for the expected total reward of horizonH starting from state s, which it calculates on-the-
fly for the states that are visited. From Theorem 2.7, we get that if we have a large enough

3.1 Receding horizon control

horizon H , in a strongly aperiodic MDP, model predictive control would use an close to
optimal strategy.

3.1.1 Unfolding of an MDP

Notice that when using model predictive control with a finite horizonH , when we are
at state s, we are only looking at states that are within distanceH from s. Thus, it is enough
to look at a finite horizon unfolding of the MDP which ignores the states far from the state
s.

We will use the notation T (M, s0, H) to refer to an MDP obtained as a tree-shaped
unfolding ofM from state s0 and for a depth of H . In particular, the states of T (M, s0, H)

correspond to paths in Paths≤HM (s0), i.e., the paths of length at most H starting from the
state s0.

Definition 3.1 (Finite horizon unfolding of an MDP)
For an MDP M = (S,A, P,R,RT , AP, L), a horizon depth H ∈ N and a state
s0, the unfolding of M from s0 and with horizon H is the tree-like MDP defined as
T (M, s0, H) = (S ′ = S0∪ · · ·∪SH , A, P ′, R′, R′T , AP, L′), where for all i ∈ [0, H],
Si = Pathsi(s0). The mappings P ′, R′, R′T and L′ are inherited from P , R, RT and
L naturally with additional self-loops at the leaves of the unfolding, so that for all
i ∈ [0, H], p ∈ Si, a ∈ A and p′ ∈ S ′,

P ′(p, a, p′) =


P (last(p), a, last(p′)) if i < H and ∃s′ ∈ S, p′ = p · as′

1 if i = H and p′ = p

0 otherwise,

R′(p, a) =

R(last(p), a) if i < H

0 otherwise.

R′T (p) =RT (last(p))

L′T (p) =L(last(p))

Example 3.1 Figure 3.1 describes the unfolding of the MDP from Example 2.4 for horizon
1 starting from the stateMoving. �

We will show that for a state s, the optimal expected total reward for horizonH in the

52

3.1 Receding horizon control

Moving

Moving ·
walk ·

Moving

Moving ·
walk ·

Moving ·
walk ·

Moving

1

walk | 1

Moving ·
walk ·

Moving ·
run ·

Moving

0.7

Moving ·
walk ·

Moving ·
run ·

Fallen

0.3

run | 2

1

walk | 1

Moving ·
run ·

Moving

Moving ·
run ·

Moving ·
walk ·

Moving

1

walk | 1

Moving ·
run ·

Moving ·
run ·

Moving

0.7

Moving ·
run ·

Moving ·
run ·

Fallen

0.3

run | 2

0.7

Moving ·
run ·

Fallen

Moving ·
run ·

Fallen ·
stand ·
Moving

0.7

Moving ·
run ·

Fallen ·
stand ·
Fallen

0.3

stand | −1

0.3

run | 2

Figure 3.1: Unfolding of the MDP in Example 2.4 for horizon 2 starting from the state
Moving

MDPM (and corresponding strategy that optimizes it) is same as the optimal expected total
reward for horizon H in the H-horizon unfolding of M from state s (and corresponding
strategy):

Lemma 3.1
ValHM(s0) is equal to ValHT (M,s0,H)(s0), and optHM(s0) is equal to optHT (M,s0,H)(s0).

Proof Let us prove that for all i ∈ [0, H] and all p ∈ Si,

ValH−iM (last(p)) = ValH−iT (M,s0,H)(p), and
optH−iM (last(p)) = optH−iT (M,s0,H)(p).

We prove the first statement by induction on H − i. For H − i = 0, for all p ∈ Si,
ValH−iM (last(p)) = ValH−iT (M,s0,H)(p) = RT (last(p)). Assume the statement is true forH−i =

k, so that for all p ∈ SH−k, ValkM(last(p)) = ValkT (M,s0,H)(p). Then for all p ∈ SH−k−1, we
have for all a ∈ A and s ∈ Supp(P (last(p), a)), ValkM(s) = ValkT (M,s0,H)(p · as). It follows
that

Valk+1
M (last(p)) = max

a∈A
(R(last(p), a) +

∑
s

P (last(p), a)ValkM(s))

= max
a∈A

(R(last(p), a) +
∑
s

P (last(p), a)ValkT (M,s0,H)(p · as))

= Valk+1
T (M,s0,H)(p) .

53

3.2 Bisimulation in MDPs

From ValH−iM (last(p)) = ValH−iT (M,s0,H)(p) and optHM(last(p)) = arg maxa∈A(R(last(p), a) +∑
s P (last(p), a)ValH−1

M (s)), we derive optH−iM (last(p)) = optH−iT (M,s0,H)(p). �

3.2 Bisimulation in MDPs

In Section 2.3.3, we described the notion of bisimulation for Markov chains. Here,
we extend the notion of bisimulation for MDPs. The idea behind using bisimulation in
decision-time planning is the following: instead of synthesizing an optimal strategy in the
original MDP, we can search for an optimal strategy in the bisimulation quotient, which is
a smaller MDP. Then from this strategy, we can generate an optimal strategy in the original
MDP.

Definition 3.2
LetM = (S,A, P,R,RT , AP, L) be anMDP. A bisimulation relation is an equivalent
relation ∼ on S such that for all state s1, s2 ∈ S such that s1 ∼ s2, we have:

L(s) = L(s′), and,
for all t ∈ T and a ∈ A,∑t′∼t P (s1, a, t

′) =
∑

t′∼t P (s1, a, t
′)

If s1 ∼ s2, we call s1 and s2 bisimilar equivalent or bisimilar. Similar to the case for
Markov chains, we denote the set {s′ | s′ ∼ s} by [s]∼ and the set of equivalent classes
by S∼. The first condition in Definition 3.2 states that the bisimilar states are equally
labelled. The last condition requires that for bisimilar states the probability of moving to
some equivalence class using same action is equal.

Definition 3.3 (Bisimulation quotient)
Let M = (S,A, P,R,RT , AP, L) be an MDP. The quotient MDP is defined by
M∼ = (S∼, A, P

′, R′, R′T , AP, L
′) where

For s, t ∈ S and a ∈ A, P ′([s]∼, a, [t]∼) =
∑

t′∼t P (s, a, t′),
For s ∈ S and a ∈ A, R′(s, a) = 0,
For s ∈ S, R′T (s) = 0,
For s ∈ S, L′([s]∼) = L(s).

Note that P ′ and L′ are well-defined from the definition of bisimulation. In our notion
of bisimulation, we are only focusing on the case where the bisimilar states would simulate
each other with respect to the probabilistic transitions, they are not simulating each other’s

54

3.2 Bisimulation in MDPs

associated rewards. This is why in the bisimulation quotient we are ignoring the rewards.

Example 3.2 A state in theMDP for Pac-Man in Example 1.1 can bewritten as s = (sA, sF)

where sA is the encoding of the position of the agents and sF is the encoding of the position
of the food pills. We define a relation ∼ where s1 ∼ s2 iff sA1 = sA2 . In other words, two
states are equivalent if the position of the agents are same in both states.

Suppose the states are labelled by loss if it is losing i.e., Pac-Man has the same position
as one of the ghosts. This only depend on the position of the agents, not on the food pills.
Also, the probabilistic transition of the ghosts does not depend on the food positions. This
makes ∼ a bisimulation. �

We can extend the notion of bisimilar equivalence to the paths. The paths p1 =

s0a0s1 . . . and p2 = t0b0t1 . . . are bisimulation equivalent, denoted by p1 ∼ p2, if and only
if si ∼ ti for all i ≥ 0 and ai = bi for all for all i ≥ 0. we denote the set {p′ | p′ ∼ p} by
[p]∼.

Let σ be a strategy in M∼. This defines a strategy γ(σ) in M by γ(σ)(p) = σ([p]).
For the ease of notation, for a strategy σ inM∼, we write denote the Markov chainMγ(σ)

induced by γ(σ) inM asMσ. Out motivation is the following: instead of finding a strategy
γ(σ) in M , it is often easier to find a strategy σ using model-checking techniques in M∼
as it is a smaller MDP. We will show that a PCTL property will hold for a state s in the
Markov chainMσ if it holds for the state [s] in the Markov chain (M∼)σ.

We claim that ∼ is a bisimulation (for Markov chains) in the Markov chainMσ:

Lemma 3.2
Let ∼ be a bisimulation in an MDP M . Let σ be a strategy in M∼. Then, ∼ is a
bisimulation inMσ.

Proof The states in Mσ are paths in PathsM(γ(σ)), i.e., the set of finite paths in M
generated by following γ(σ). Let Mσ = (PathsM(γ(σ)), Pσ, AP, Lσ). For two paths
p1, p2 ∈ PathsM(γ(σ)) such that p1 ∼ p2, we need to prove that:

Lσ(p1) = Lσ(p2), and,
For any state p3 ∈ PathsM(γ(σ)),

∑
t′∼t Pσ(s1, t

′) =
∑

t′∼t Pσ(s1, t
′).

Note that as p1 ∼ p2 inM , L(last(p1)) = L(last(p2)). Hence,

Lσ(p1) = L(last(p1)) = L(last(p2)) = Lσ(p2).

55

3.2 Bisimulation in MDPs

This proves the first condition of bisimulation.

Also, for p ∈ PathsM(γ(σ)),

Pσ(p1, p) =

γ(σ)(p1, a) · P (last(p1), a, s) if p = p · as,
0 otherwise.

Then, for a path p3, if there is no a ∈ A and s ∈ S such that p3 ∼ p1 · as, we will have∑
p∼p3 Pσ(p1, p) = 0. As p1 ∼ p2, we will also have that there is no a ∈ A and s ∈ S such

that p3 ∼ p2 · as. So,
∑

p∼p3 Pσ(p2, p) = 0.

If p3 ∼ p1 · as for some a ∈ A and s ∈ S, we have:∑
p∼p3

Pσ(p1, p) =
∑

p∼p1·as

Pσ(p1, p) =
∑

p1·as′∼p1·as

Pσ(p1, p1 · as′)

=
∑
s′∼s

Pσ(p1, p1 · as′)

=
∑
s′∼s

γ(σ)(p1, a) · P (last(p1), a, s′)

= σ([p1], a)
∑
s′∼s

P (last(p1), a, s′)

Now as p1 ∼ p2, we also have p3 ∼ p2 · as. So, similarly:∑
p∼p3

Pσ(p2, p) = σ([p2], a)
∑
s′∼s

P (last(p2), a, s′)

Now [p1] = [p2] and
∑

s′∼s P (last(p1), a, s′) =
∑

s′∼s P (last(p2), a, s′). So∑
p∼p3

Pσ(p1, p) =
∑
p∼p3

Pσ(p2, p).

This proves the second condition on bisimulation. �

We want to show ‘equivalence’ between following two Markov chains:

1. (M∼)σ = (S∼σ, P∼σ, AP, L∼σ) defined by the quotient MDPM∼ equipped with the
strategy σ.

2. (Mσ)∼ = (Sσ∼, Pσ∼, AP, Lσ∼) which is the quotient of the Markov chain Mσ with
respect to the bisimulation relation ∼.

Consider the function I between S∼σ and Sσ∼ where I([s0]a0[s1] . . . [sn]) = [s0a0s1 . . . sn].
We define the following relation ∼I on S∼σ] Sσ∼:

∼I=
⋃

p∈S∼σ

{(p, p), (p, I(p)), (I(p), p), (I(p), I(p))

56

3.2 Bisimulation in MDPs

Lemma 3.3
∼I is a bisimulation in the Markov chain (M∼)σ] (Mσ)∼.

Proof For any p ∈ S∼σ, (p, p) ∈∼I . For any [s0a0s1 . . . sn] ∈ Sσ∼, [s0a0s1 . . . sn] =

I([s0]a0[s1] . . . [sn]). So, ([s0a0s1 . . . sn], [s0a0s1 . . . sn]) ∈∼I . Thus, ∼I is reflexive.

For any p ∈ S∼σ, we have (p, I(p)) ∈∼I and (I(p), p) ∈∼I . So for any (p, q) ∈∼I ,
(q, p) ∈∼I . Thus, ∼I is symmetric.

Also, for any (p, I(p)) ∈∼I , (I(p), p) ∈∼I and (p, p) ∈∼I . So for any (p, q) and
(q, r) ∈∼I , (p, r) ∈∼I . Thus, ∼I is transitive.

Thus, ∼I is an equivalence relation. Also, we have L([s0]a0[s1] . . . [sn]) = L([sn]) =

L(s0a0s1 . . . sn) = L([s0a0s1 . . . sn]) .

Let ρ = [s0]a0[s1] . . . [sn] and ρ′ = [s0]a0[s1] . . . [sn]an1 [sn+1]. Then,

Pσ∼(I(ρ), I(ρ′)) =
∑

s′0a0s
′
1...s

′
nan+1s∼s0a0s1...snan+1sn+1

Pσ(s0a0s1 . . . sn, s
′
0a0s

′
1 . . . s

′
nan+1s)

=
∑

s∼sn+1

Pσ(s0a0s1 . . . sn, s0a0s1 . . . snan+1s)

=
∑

s∼sn+1

σ(ρ, an+1) · P (sn, an+1, s)

= σ(ρ, an+1) ·
∑

s∼sn+1

P (sn, an+1, s)

= σ(ρ, an+1) · P∼([sn], an+1, [sn+1])

= P∼σ(ρ, ρ′)

Each equivalence classes in S∼I contain only two elements ρ and I(ρ) where ρ ∈ S∼σ.
Also, S∼σ and Sσ∼ are disjoint. So from P∼σ(ρ, ρ′) = Pσ∼(I(ρ), I(ρ′)), we get that ∼I
also obeys the second condition of bisimulation.

Thus, ∼I is a bisimulation relation in the Markov chain (M∼)σ] (Mσ)∼. �

Theorem 3.1
Let Φ be a PCTL state formula. Suppose there exists a strategy σ in M∼ such that
[s] |= Φ in the Markov chain (M∼)σ. Then there exists a strategy σ′ inM such that
s |= Φ in the Markov chainMσ′ .

Proof From Lemma 3.3, we get that there is a bisimulation relation ∼I such that the state

57

3.3 Pruning

[s] in (M∼)σ and the state [s] in (Mσ)∼ are bisimilar. So [s] |= Φ in (M∼)σ implies [s] |= Φ

in (Mσ)∼.

Hence, from Theorem 2.4, s |= Φ in Mσ, which is the Markov chain induced by the
strategy γ(σ) where for a path p inM , γ(σ)(p) = σ([p]). �

Example 3.3 In Pac-Man, consider the set of states labelled with loss where Pac-Man
gets eaten by a ghost. Suppose from the current state s, we want to find a strategy σ such
that Pac-Man stays safe for 10 steps with probability at least 0.9 following that strategy. In
other words, we want to find a strategy such that in the Markov chainMσ,

s |= P≥0.9(�≤10¬loss) .
We consider the quotient MDP described in Example 3.2 where two states with same
position of the agents are put in same equivalence class. Suppose we find a strategy σ in
the quotient MDP such that Pac-Man stays safe for 10 steps with probability at least 0.9

following that strategy. Then we can use this strategy in the original MDP by taking σ(sA)

from any state (sA, sF). �

3.3 Pruning

A memoryless nondeterministic strategy can be used to prune an MDP to a sub-MDP.
This can be useful during decision-time planning if we already know that some actions in
the MDP is suboptimal and would not be part of the optimal strategy. This means that an
optimal strategy will be contained in the nondeterministic strategy obtained by removing
these actions.

We define the MDP pruned by a memoryless nondeterministic strategy as follows:

Definition 3.4 (Pruned MDP)
For an MDP M = (S,A, P,R,RT , AP, L) and a memoryless non-deterministic
strategy σ, let the pruned MDPMσ = (S,A, P ′, R′, RT , AP, L) be the sub-MDP of
M obtained by removing all action transitions that are not compatible with σ. In
other words, we have,

P ′(s, a, s′) =

P (s, a, s′) if a ∈ σ(s)

⊥ otherwise,

58

3.3 Pruning

R′(s, a) =

R(s, a) if a ∈ σ(s)

⊥ otherwise.

Note that a nondeterministic strategy in an MDP would give a memoryless nonde-
terministic strategy in a finite horizon unfolding as states in the unfolding are finite paths.
Thus, a nondeterministic strategy prunes the finite horizon unfolding:

Definition 3.5 (Pruned unfolding)
For an MDP M = (S,A, P,R,RT), a horizon H ∈ N, a state s0 and a non-
deterministic strategy σ, let the pruned unfolding T (M, s0, H, σ) be defined as a
sub-MDP of T (M, s0, H) that contains exactly all paths in PathsHM(s0)∩PathsHM(σ).
It can be obtained by the following steps:

1. Construct the unfolding T (M, s0, H).
2. Prune the MDP T (M, s0, H) with σ.

We argue that if a nondeterministic strategy contains an optimal strategy, the optimal
strategy in the pruned unfolding using the nondeterministic strategy would give an optimal
strategy in the original MDP.

Theorem 3.2
Suppose that there exists a strategy σ′ ⊆ σ such that σ′ is an optimal strategy for
expected total of horizon H at state s0. Then, ValHM(s0) equals ValHT (M,s0,H,σ)(s0).
Moreover, optHT (M,s0,H,σ)(s0) ⊆ optHM(s0).

Proof As σ′ ⊆ σ, σ′ is a strategy that can be followed in T (M, s0, H, σ). So,

ValHT (M,s0,H)(s0, σ
′) = ValHT (M,s0,H,σ)(s0, σ

′) .

Thus, from the definition of the optimal expected total reward,

ValHT (M,s0,H)(s0, σ
′) = ValHT (M,s0,H,σ)(s0, σ

′) ≤ ValHT (M,s0,H,σ)(s0)

Consider the strategy σ∗ ∈ arg maxσ′′ ValHT (M,s0,H,σ)(s0, σ
′′). This is also a strategy in

T (M, s0, H). So,

ValHT (M,s0,H)(s0, σ
∗) = ValHT (M,s0,H,σ)(s0, σ

∗) .

59

3.3 Pruning

Therefore, we have,

ValHT (M,s0,H)(s0, σ
′) ≥ ValHT (M,s0,H)(s0, σ

∗) = ValHT (M,s0,H,σ)(s0, σ
∗) = ValHT (M,s0,H,σ)(s0)

Thus ValHT (M,s0,H)(s0, σ
′) = ValHT (M,s0,H,σ)(s0). Then, from Lemma 3.1, we get,

ValHM(s0) = ValHT (M,s0,H)(s0, σ
′) = ValHT (M,s0,H,σ)(s0) .

Let a be an action in optHT (M,s0,H,σ)(s0). Then, there exists an optimal strategy σ∗ ∈
arg maxσ′′ ValHT (M,s0,H,σ)(s0, σ

′′) so that σ∗(s0) = a. It follows from ValHT (M,s0,H)(s0) =

ValHT (M,s0,H,σ)(s0) that σ∗ is also an optimal strategy in T (M, s0, H). Then, by Lemma 3.1,
we get, a ∈ optHT (M,s0,H)(s0) = optHM(s0). �

60

Chapter 4

Advice

In heuristic search, in every step of the planning, a large tree is constructed by sam-
pling paths in the unfolding. We introduce the notion of advice which will be used to
systematically inject domain-specific knowledge in heuristic searches to direct the search
to the relevant part of the unfolding. Formally, an advice would denote a set of finite paths
in an MDP which can be represented by a logical formula. It identifies the paths which
would have an effect in the planning of the optimal strategy. This way an advice forces to
simulate paths only at the relevant part of the unfolding.

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2

7 4 4 4 4 4 7 7 7 7 7 744

Paths to be simulated
from according to A

Figure 4.1: An advice forces the heuristic search to simulate from only relevant paths
(marked by 4 at the leaves) in the unfolding. A path marked by 7 at the leaf does not satisfy
the advice A , so it will never be sampled.

Example 4.1 In the game of Pac-Man, consider the set of states labelled with loss where
Pac-Man gets eaten by a ghost. Since reaching such a state gives very bad reward, one
advice could be to simulate among H-length paths containing no such states.

4.1 Symbolic advice

A naïve heuristic approach to find a good action in the root of the unfolding from the
current would be to sample uniformly among these good paths. An advice could represent
such paths. �

An advice can be represented symbolically by a logical formula from which the
advice can be extracted on-the-fly. In this online computation, we will use formal method
techniques but in a finite horizon unfolding of an abstraction of the MDP, which has much
smaller state-space than the original MDP. In this chapter, we formally define advice and
give examples how it can be encoded symbolically. We also discuss techniques to sample
paths in an MDP based on an advice.

4.1 Symbolic advice

A symbolic advice A is a logical formula over finite paths whose truth value can be
tested with an operator |=. Many standard notions can fit this framework. For example, a
Boolean SAT formula, or an PCTL path formula can be used.

Example 4.2 In Pac-Man, consider the H-length paths containing no states labelled with
loss as described in Example 4.1. The set of all such paths can be written by an PCTL path
formula ϕH = �≤H(¬loss). �

We denote by PathsHM(A) the set of paths p ∈ PathsHM such that p |= A . For a
path p ∈ Paths≤HM , we denote by PathsHM(p,A) the set of paths p′ ∈ PathsHM(p) such that
p′ |= A . In particular, for all s ∈ S, PathsHM(s,A) refers to the paths of lengthH that start
from s and that satisfy A .

Nondeterministic strategies for an advice For a symbolic advice A and a horizon
H , we define a nondeterministic strategy σHA and a nondeterministic strategy τHA for the
environment such that for all paths p with |p| < H ,

σHA (p) = {a ∈ A | ∃s ∈ S,∃p′ ∈ Paths
H−|p|−1
M (s), p · as · p′ |= A } ,

τHA (p, a) = {s ∈ S | ∃p′ ∈ Paths
H−|p|−1
M (s), p · as · p′ |= A } .

The strategies σHA and τHA can be defined arbitrarily on paths p of length at least H , for
example with σHA (p) = A and τHA (p, a) = Supp(P (last(p), a)) for all actions a. Note that
by definition, PathsHM(s,A) = PathsHM(s, σHA) ∩ PathsHM(s, τHA) for all states s.

62

4.1 Symbolic advice

Let > denote the universal advice satisfied by every finite path, and let σ> and τ>
be the associated nondeterministic strategies. Similarly, let ⊥ denote the empty advice
that is never satisfied, and let σ⊥ and τ⊥ be the associated nondeterministic strategies.
We define a class of advice that can be enforced against an adversarial environment by
following a nondeterministic strategy, and that are minimal in the sense that paths that are
not compatible with this strategy are not allowed.

Definition 4.1 (Enforceable advice)

A symbolic advice A is called an enforceable advice from a state s0 and for a
horizon H if there exists a nondeterministic strategy σ such that PathsHM(s0, σ) =

PathsHM(s0,A), and such that σ(p) 6= ∅ for all paths p ∈ Paths≤H−1
M (s0, σ).

Note that Definition 4.1 ensures that paths that follow σ can always be extended into
longer paths that follow σ. This is a reasonable assumption to make for a nondeterministic
strategy meant to enforce a property. In particular, s0 is a path of length 0 in Paths0

M(s0, σ),
so that σ(s0) 6= ∅ and so that by induction PathsiM(s0, σ) 6= ∅ for all i ∈ [0, H].

Lemma 4.1
Let A be an enforceable advice from s0 with horizon H . It holds that
PathsHM(s0, σ

H
A) = PathsHM(s0,A).

Moreover, for all paths p ∈ Paths≤H−1
M (s0) and all actions a, either τHA (p, a) =

τ>(p, a) or τHA (p, a) = τ⊥(p, a).
Finally, for all paths p in Paths≤H−1

M (s0, σ
H
A), σHA (p) 6= ∅ and a ∈ σHA (p) if and only

if τHA (p, a) = τ>(p, a).

Proof WehavePathsHM(s0,A) = PathsHM(s0, σ
H
A)∩PathsHM(s0, τ

H
A) for any adviceA . Let

us prove that PathsHM(s0, σ
H
A) ⊆ PathsHM(s0,A) for an enforceable advice A of associated

strategy σ. Let p = p′ · as be a path in PathsHM(s0, σ
H
A). By definition of σHA , there exists

s′ ∈ S such that p′ · as′ |= A , so that p′ · as′ ∈ PathsHM(s0,A) = PathsHM(s0, σ). Since
s ∈ Supp(P (last(p′), a)), p = p′ ·asmust also belong to PathsHM(s0, σ) = PathsHM(s0,A).

Consider a path p and an action a such that |p| < H . We want to prove that either
all stochastic transitions starting from (p, a) are allowed by A , or none of them are. By
contradiction, let us assume that there exists s1 and s2 in Supp(P (last(p), a)) such that for
all p′1 ∈ Paths

H−|p|−1
M (s1), p ·as1 ·p′1 6|= A , and such that there exists p′2 ∈ Paths

H−|p|−1
M (s2)

with p · as2 · p′2 |= A . From p · as2 · p′2 |= A , we obtain p · as2 · p′2 ∈ PathsHM(σ), so that
p · as2 is a path that follows σ. Then, p · as1 is a path that follows σ as well. It follows that

63

4.1 Symbolic advice

σ(p ·as1) 6= ∅, and p ·as1 can be extended in to a path p ·as1p
′
3 ∈ PathsHM(σ). This implies

the contradiction p · as1p
′
3 |= A .

Finally, consider a path p in Paths≤H−1
M (s0, σ

H
A). By the definitions of σHA and τHA ,

a ∈ σHA (p) if and only if τHA (p, a) 6= ∅, so that τHA (p, a) = τ>(p, a). Then, let us write
p = p′ · as. From p ∈ Paths≤H−1

M (s0, σ
H
A) we get a ∈ σHA (p′), so that s ∈ τHA (p′, a), and

therefore σHA (p) 6= ∅. �

An enforceable advice is encoding a notion of guarantee, as σHA is a winning strategy
for the reachability objective on T (M, s0, H) defined by the set PathsHM(A).

We say that the enforceable advice A ′ is extracted from a symbolic advice A for a
horizonH and a state s0 ifA ′ is the greatest part ofA that can be guaranteed for the horizon
H starting from s0, i.e. if PathsHM(s0,A ′) is the greatest subset of PathsHM(s0,A) such that
σHA ′ is a winning strategy for the reachability objective PathsHM(s0,A) on T (M, s0, H).
This greatest subset always exists because if A ′

1 and A ′
2 are strongly an enforceable advice

in A , then A ′
1 ∪ A ′

2 is strongly enforceable by union of the nondeterministic strategies
associated with A ′

1 and A ′
2 . However, this greatest subset may be empty, and as⊥ is not an

enforceable advice we say that in this case A cannot be enforced from s0 with horizon H .

Example 4.3 Note that the advice in Example 4.1 is not enforceable, as there may be
situations (p, a) where some stochastic transitions lead to bad states and some do not. For
example, in Figure 4.2, the path of length H = 1 that corresponds to Pac-Man going left
and the red ghost going up is allowed by the advice A , but not by any safe strategy for
Pac-Man as there is a possibility of losing by playing left.

Figure 4.2: Pac-Man with 4 ghosts in a 9× 21 grid. The figure has been generated using
the code from [DK].

64

4.2 Sampling according to a symbolic advice

But we can get an enforceable advice A by finding a strategy that ensures whatever
actions the ghosts take, Pac-Manwill not reach the states labelledwith loss. We consider the
safety game in the underlying game graph of the finite horizon unfolding of the MDP. From
Theorem 2.1, we have amost general stategy to stay safe in this game. This nondeterministic
strategy will enforce an advice A . �

Pruning by an advice Note that for an enforceable advice A , σA is a memoryless non-
deterministic strategy in T (M, s,H). This prunes the finite unfolding of an MDP from any
state s ∈ S. We call this pruned unfolding T (M, s,H,A).

Optimality assumption An enforceable advice A satisfies the optimality assumption for
horizonH if for all s ∈ S, there exists a strategy σs ⊆ σA such that σs is an optimal strategy
for expected total of horizon H at state s.

We argue that if an advice satisfies the optimality assumption, the optimal strategy in
the pruned unfolding by this strategy gives an optimal strategy in the original MDP.

Theorem 4.1
Let A be a enforceable advice that satisfies the optimality assumption. Then, for
an s0 ∈ S, ValHM(s0) equals ValHT (M,s0,H,A)(s0). Moreover, optHT (M,s0,H,A)(s0) ⊆
optHM(s0).

Proof By the optimality assumption, there exists a strategy σs0 ⊆ σA such that σs0 is
an optimal strategy for expected total of horizon H at state s0. Also, T (M,S0, H,A) is
the pruned unfolding constructed from the state s0 by the memoryless non-deterministic
strategy σA . So from Lemma 3.2, we get that ValHM(s0) = ValHT (M,s0,H,A)(s0) and
optHT (M,s0,H,A)(s0) ⊆ optHM(s0). �

4.2 Sampling according to a symbolic advice

Given a symbolic adviceA as a logical formula over paths of lengthH and a probability
distribution w in D(PathsHM), our goal is to sample paths of MDP M that satisfy A with

65

4.2 Sampling according to a symbolic advice

respect to w. This means the probability of a path p being sampled should be equal to
w(p)∑

p′:p′|=A w(p′)
.

We show two approaches for that:

Reject-based approach In this approach described in Algorithm 3, we keep on sampling
paths of length H according to w until we found a path that is in support of A .

Algorithm 3 Reject-based sampling approach

Input: A probability distribution w ∈ D(PathsHM), a symbolic advice A .
Output: a path p

1: while p 6|= A do
2: sample a path p of length H according to the probability distribution w
3: end while
4: return p

In this way, probability of sampling a path p at a single round is w(p) and probability
of sampling a path not satisfying A is 1 −∑p′:p′|=A w(p′). So probability of sampling p
which satisfies A at ith round of this process is

w(p) ·

1−
∑

p′:p′|=A

w(p′)

i−1

.

So the path p will be sampled with probability
∞∑
i=1

w(p)×

1−
∑

p′:p′|=A

w(p′)

i−1

=
w(p)∑

p′:p′|=A w(p′)
.

SAT solver-based approach From the symbolic advice and a symbolic model of the
MDPM , one can often encode A as a Boolean formula. For example, if A is described in
Linear Temporal Logic, and a symbolic model of the MDPM is available, one can encode
it as a Boolean formula of size linear in the size of the LTL formula and H [Bie+06].

Example 4.4 As in Example 4.1, given a horizon H and a state s ∈ S, we want to make
sure that a state labelled with loss is not reached within H steps. We can have Boolean
variables to encode the states and the actions in the next H steps. For i ∈ [0, H], let si
be the Boolean variables that encodes the state at step i. For i ∈ [0, H − 1], let ai be the
Boolean variables that encodes the action at step i.

66

4.3 On-the-fly computation of an enforceable advice

Then we can construct a SAT formula Φ(s0, a0, . . . , sH) with clauses that encode the
game rules and clauses that enforce the advice. The former clauses are implications such as
“if Pac-Man is in position (x, y) and plays the action a, then it must be in position (x′, y′)

at the next game step”, while the latter clauses state that the position of Pac-Man should
never be equal to the position of one of the Ghosts. �

Letω denote a weight function over Boolean assignments that matchesw. This reduces
our problem to the weighted sampling of satisfying assignments in a Boolean formula. An
exact solver for this problemmay not be efficient, but one can use the techniques of [Cha+14]
to perform approximate sampling in polynomial time:

Theorem 4.2 ([Cha+14])
Given a CNF formula ψ, a tolerance ε > 0 and a weight function ω, we can construct
a probabilistic algorithm which outputs a satisfying assignment z such that for all y
that satisfies A :

ω(y)

(1 + ε)
∑

x|=ψ ω(x)
≤ Pr[z = y] ≤ (1 + ε)ω(y)∑

x|=ψ ω(x)

The above algorithm occasionally ‘fails’ (outputs no assignment even though there
are satisfying assignments) but its failure probability can be bounded by any given
δ. Given an oracle for SAT , the above algorithm runs in time polynomial in ln

(
1
δ

)
,

|ψ|, 1
ε
and r where r is the ratio between highest and lowest weight according to ω.

In particular, this algorithm uses ω as a black-box, and thus does not require pre-
computing the probabilities of all paths satisfying A . In our particular application, the

value r can be bounded by
(
pmax|A|
pmin

)H
where pmin and pmax are the smallest and greatest

probabilities for stochastic transitions inM .

4.3 On-the-fly computation of an enforceable advice

A direct encoding of an enforceable advice may prove impractically large. We argue
for an on-the-fly computation of σHA instead, in the particular case where the enforceable
advice is extracted from a symbolic advice A with respect to the initial state s0 and with
horizon H .

67

4.3 On-the-fly computation of an enforceable advice

4.3.1 Computation using QBF solvers

Lemma 4.2
Let A ′ be an enforceable advice extracted from A for horizon H . Consider a node
p at depth i in T (M, s0, H,A ′), for all a0 ∈ A, a0 ∈ σHA ′(p) if and only if

∀s1∃a1∀s2 . . . ∀sH−i+1, p · a0s1a1s2 . . . sH−i+1 |= A ,

where actions are quantified over A and every sk is quantified over
Supp(P (sk−1, ak−1)).

Proof The proof is a reverse induction on the depth i of p. For the initialisation step with
i = H , let us prove that ∀s1, p · a0s1 |= A if and only if a0 ∈ σHA ′(p). On the one
hand, if A is guaranteed by playing a0 from p, then a0 must be allowed by the greatest
enforceable subset ofA . On the other hand, a0 ∈ σHA ′(p) implies ∀s1, p ·a0s1 |= A ′ asA ′

is enforceable, and finally A ′ ⇒ A . We now assume the property holds for 1 ≤ i ≤ H ,
and prove it for i − 1. If a0 ∈ σHA ′(p), then for all s1 we have s1 ∈ τHA ′(p, a0), so that
there exists a1 with a1 ∈ σHA ′(p · a0s1). As p · a0s1 is at depth i we can conclude that
∀s1∃a1∀s2 . . . ∀sH−i+1, p · a0s1a1s2 . . . sH−i+1 |= A by assumption. For the converse
direction, the alternation of quantifiers states that A can be guaranteed from p by some
deterministic strategy that starts by playing a0, and therefore a0 must be allowed by the
enforceable advice extracted from A . �

Therefore, given a Boolean formula encoding A , one can use a Quantified Boolean
Formula (QBF) solver to compute σHA ′ , the enforceable advice extracted from A : this
computation can be used whenever MCTS performs an action selection step under the
advice A ′, as described in Section 5.2.

The performance of this approach will crucially depend on the number of alternating
quantifiers, and in practice one may limit themselves to a smaller depth h < H − i in this
step, so that safety is only guaranteed for the next h steps.

Some properties can be inductively guaranteed, so that satisfying the QBF formula
of Lemma 4.2 with a depth H − i = 1 is enough to guarantee the property globally. For
example, if there always exists an action leading to states that are not bad, it is enough to
check for safety locally with a depth of 1. This is the case in Pac-Man for a deadlock-free
layout when there is only one ghost.

68

4.3 On-the-fly computation of an enforceable advice

4.3.2 Computation using other formal method techniques

The QBF-based technique may often be too restrictive. In this case with model
checking tools like Storm, we can take a more qualitative approach as follows:

Example 4.5 The set of all H-length paths where Pac-Man does not get eaten by a ghost
can be written by an PCTL path formula ϕH = �≤H(¬loss). From the state s, for each
action a, we calculate the minimum probability ηϕH (s, a) to satisfy ϕH when the action a
is taken from the state s. Formally:

ηϕH (s, a) = max
σ:σ(s)=a

Pσ(s |= ϕH) .

Then, we can construct a nondeterministic strategy by selecting the action maximizing
ηϕH (s, a). This strategy will enforce an advice. �

Note that this approach is similar to probabilistic shielding [Jan+14] computed to re-
strict unsafe action during reinforcement learning. But in our case, we perform computation
on-the-fly based on the current position alone instead of constructing the entire MDP.

4.3.3 Computation using a function

We can compute a strategy from a function. Intuitively, this function could act as a
‘score’ f(s, a) telling us how good an action a from s is. This function could be a heuristic
function calculated from the description of an MDP, a function based on model-checking
methods. For example, in Example 4.5, the function ηϕH acts as such a function. Another
interesting approach could be training a neural network to imitate the function f and use it
as a neural advice.

For a function f : S × A → R, we can create a strategy where from the state s, we
choose the action a which maximizes the value f(s, a). This is a nondeterministic strategy
as there can be more than one maximizing action.

A more general approach could be using a threshold δ ∈ (0, 1]. In that case, instead
of selecting an action from arg maxa f(s, a), we can select from the set {a′ | f(s, a′) ≥
δ ·maxa f(s, a)}.

69

Chapter 5

Monte Carlo tree search with advice

In Chapter 4, we discussed how we augment the conventional heuristic search algo-
rithms with advice. In this chapter, we will discuss how the notion of advice fits in Monte
Carlo tree search. The main idea is as follows: we have two possibly different advice, one
is used during the selection phase to remove action non-compatible with it, and another is
used during simulation phase to simulate paths according to it.

We will identify necessary conditions which ensure that the guarantees enjoyed by
MCTS is still maintained after this augmentation. To do so we will argue that the results
of MCTS are still maintained if we simulate restricted by any simulation advice ψ. Then,
we will argue that using an enforceable selection advice ϕ during MCTS is equivalent to
runningMCTS in the unfolding pruned by the advice ϕ. Thus, from Theorem 4.1, we prove
that we get the same optimal action as given by the MCTS algorithm without advice.

5.1 Generalized Monte Carlo tree search

We take a more general approach to the simulation phase of Monte Carlo tree search,
defined by a finite domain I ⊆ [0, 1] and a function f : Paths≤HM → D(I) that maps every
path p to a probability distribution on I . In this approach (see Figure 5.1), instead of
sampling, the simulation phase simply draws a value valuei(p) at random according to the
distribution f(p), and sets counti(p) = 1.

To this end, every node p of the search tree is considered to be an instance of a bandit
problemwith non-stationary distributions. Every time a node is selected, a step is processed
in the corresponding bandit problem.

Let (Ii(p))i≥1 be a sequence of iteration numbers for the MCTS algorithm that de-
scribes when the node p is selected. In other words, the simulation phase was used on p at
iteration number I1(p), and the i-th selection of node p happened on the iteration number
Ii(p). We define sequences (Ii(p, a))i∈N similarly for node-action pairs.

5.1 Generalized Monte Carlo tree search

s0

s1

s1

s1 s2

a3

s2

s0 s2

a4

a3

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4 v′4

a1

v′1

s2

s0

s1 s2

a1

s2

a2

s2

s0 s2

a4

a4

a2
v2

v ∼ f(s0a1s2a4s0)

Figure 5.1: Instead of simulating, the value at node p is drawn according to a distribultion
f(p).

For all paths p and actions a, a payoff sequence (xa,t)t≥1 of associated random variables
(Xa,t)t≥1 is defined by xa,t = rewardIt(p,a)(p). Note that in the selection phase at iteration
number It(p, a), pmust have been selected and must be a prefix of length k of the leaf node
p′ reached in this iteration, so that rewardIt(p,a)(p) is computed as rewardIt(p,a)(p

′
|k) in the

backpropagation phase. According to the notations of Section 2.5, for all t ≥ 1 we have
countIt(p)(p) = t, countIt(p)(p, a) = ta and valueIt(p)(p, a) = xa,ta .

After n iterations of MCTS, we have:

totaln(p) =
∑

i|Ii(p)≤n

rewardIi(p)(p)

total(p, a) =
∑

i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

From the structure of the MCTS algorithm, we can observe that, for all nodes p in the
search tree, after n iterations, we have:

totaln(p) = rewardI1(p)(p) +
∑
a∈A

totaln(p, a)

totaln(p, a) =
∑

s∈Supp(P (last(p),a)

totaln(p · as) +R(last(p), a) · countn(p, a)

valuen(p) =
totaln(p)

countn(p)

71

5.1 Generalized Monte Carlo tree search

countn(p) = 1 +
∑
a

countn(p, a)

countn(p, a) =
∑
s

countn(p · as)

We need to show that our payoff sequences (xa,t)t≥1, still satisfy the drift conditions
of Definition 2.13. We argue that this is true for all simulation phases defined by any I and
f :

Lemma 5.1
For any MDP M , horizon H and state s0, the sequences (Xa,t)t≥1 satisfy the drift
conditions of Definition 2.13.

Proof In the following proof we will abuse notations slightly and conflate the variables and
counters used in MCTS with their associated random variables, e.g. we write E[valuen(s0)]

instead of E[Vn(s0)] with Vn(s0) a random variable that represents the value valuen(s0).
We need to show that the following conditions hold:

1. limcountn(p)→∞ E[valuen(p, a)] exists for all a.
2. There exists a constant Cp > 0 such that for countn(p, a) big enough and any δ > 0,

∆countn(p,a)(δ) = Cp
√

countn(p, a) ln(1/δ), the following bounds hold:

P
[

totaln(p, a) ≥ E[totaln(p, a)] + ∆countn(p,a)(δ)
]
≤ δ

P
[

totaln(p, a) ≤ E[totaln(p, a)]−∆countn(p,a)(δ)
]
≤ δ

We show it by induction on H − |p|. For a node at depth H − 1 of the tree, the
sequences follow stationary distribution according to the probability distribution in the
MDP. In the inductive step, we have, for a node p at depth k, all actions ai and states sj ,
that the sequences at node p · aisj satisfy the drift conditions. We need to show that these
conditions are also maintained one step above the tree, i.e., and the sequences at node p
satisfy the drift conditions.

Base case of induction for Condition 1: For |p| = H − 1: totaln(p, a) is sum of
countn(p, a) independent variables

totaln(p, a) =
∑

i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

72

5.1 Generalized Monte Carlo tree search

which follows same stationary distribution:

rewardi(p, a) = R(last(p), a) +RT (s) with probability P (last(p), a, s).

Therefore we have,

E[valuen(p, a)] = E
[
totaln(p, a)

countn(p, a)

]

= E

 1

countn(p, a)

∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a)


= E

[
countn(p, a)

countn(p, a)

](∑
s

(R(last(p), a) +RT (s)) · P (last(p), a, s)

)
=
∑
s

(R(last(p), a) +RT (s)) · P (last(p), a, s)

=
∑
s

RT (s)P (last(p), a, s) +R(last(p), a)

So limcountn(p)→∞ E[valuen(p, a)] exists.

Base case of induction for Condition 2: From Theorem 2.2, for any δ > 0,

P

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a) ≥ E

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

+

√
countn(p, a)

2
ln

1

δ

 ≤ δ ,

P

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a) ≤ E

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

−√countn(p, a)

2
ln

1

δ

 ≤ δ .
Which means,

P

[
totaln(p, a) ≥ E[totaln(p, a)] +

√
countn(p, a)

2
ln

1

δ

]
≤ δ ,

P

[
totaln(p, a) ≤ E[totaln(p, a)]−

√
countn(p, a)

2
ln

1

δ

]
≤ δ .

Therefore, condition 2. also holds with Cp = 1√
2
.

73

5.1 Generalized Monte Carlo tree search

Inductive step for Condition 1: Assume that the drifting conditions are true for all p ·as.
Then, from Theorem 2.9 we get:∣∣∣∣E [∑a′ totaln(pas, a′)∑

a′ countn(pas, a′)

]
− lim

countn(p·as)→∞
E [valuen(p · as, a∗)]

∣∣∣∣
≤
∣∣∣∣E [valuen(p · as, a∗)]− lim

countn(p·as)→∞
E [valuen(p · as, a∗)]

∣∣∣∣+O
(

ln(countn(p · as)− 1)

countn(p · as)− 1

)
,

where a∗ is the optimal action from p · as. Now,

lim
countn(p)→∞

E[valuen(p · as)] = lim
countn(p)→∞

E
[

totaln(p · as)
countn(p · as)

]
= lim

countn(p)→∞
E
[

totaln(p · as)− rewardI1(p)(p · as)
countn(p · as)− 1

]
= lim

countn(p)→∞
E
[∑

a′ totaln(p · as, a′)∑
a′ countn(p · as, a′)

]
.

Let limcountn(p·as)→∞ E[valuen(p · as, a∗)] be denoted by µp·as (we know that this limit
exists from the induction hypothesis). From Theorem 2.10, countn(p, a) → ∞ for all a
when countn(p) → ∞. And as for all states s, state s is chosen according to distribution
P (p, a, s), countn(p · as)→∞ with probability 1 when countn(p, a)→∞. Then,

lim
countn(p)→∞

E[valuen(p · a)] = lim
countn(p)→∞

E

[∑
s

valuen(p · as)countn(p · as)
countn(p, a)

+R(last(p), a)

]
= R(last(p), a) +

∑
s

µp·as · P (last(p), a, s) .

So limcountn(p)→∞ E[valuen(p · a)] exists.

Inductive step for Condition 2: From Theorem 2.11, when countn(p ·as) is big enough,
for all δ > 0, we have:

P
[∑

a′

totaln(pas, a′) ≥ E[
∑
a′

totaln(pas, a′)] + ∆s
1(δ)

]
≤ δ

2|S| (5.1)

where ∆s
1(δ) = 9

(√
countn(p · as) ln

(
4|S|
δ

))
.

Also, the random variable associated to rewardI1(p·as)(p ·as) follows a fixed stationary

74

5.1 Generalized Monte Carlo tree search

distribution f(p) in [0, 1]. So from the Theorem 2.2,

P
[

rewardI1(p·as)(p · as) ≥ E[rewardI1(p·as)(p · as)] + ∆2(δ)
]
≤ δ

2|S| (5.2)

where ∆2(δ) = 1√
2

(√
ln
(

2|S|
δ

))
.

We will use the fact that for n random variables {Ai}i≤n and n random variables
{Bi}i≤n,

P

[∑
i

Ai ≥
∑
i

Bi

]
≤
∑
i

P [Ai ≥ Bi] .

Note that totaln(p·as) =
∑

a′ totaln(pas, a′)+rewardI1(p·as)(p·as). FromEquation 5.1
and Equation 5.2, we get:

P
[
totaln(p · as) ≥ E[totaln(p · as)] + ∆s

1(δ) + ∆2(δ)
]

≤ P
[∑

a′

totaln(pas, a′) ≥ E[
∑
a′

totaln(pas, a′)] + ∆s
1(δ)

]
+ P

[
rewardI1(p·as)(p · as) ≥ E[rewardI1(p·as)(p · as)] + ∆2(δ)

]
≤ δ

|S| . (5.3)

Recall that, totaln(p, a) =
∑

s∈Supp(P (last(p),a)

totaln(p · as) +R(last(p), a) · countn(p, a) .

Also, E[R(last(p), a) · countn(p, a)] = R(last(p), a) · countn(p, a) as R(last(p), a) and
countn(p, a) are constants.

Then we have, from 5.3:

P

[
totaln(p, a) ≥ E[totaln(p, a)] +

∑
s

(∆s
1(δ) + ∆2(δ))

]
≤
∑
s

P
[
totaln(p · as) ≥ E[totaln(p · as)] + (∆s

1(δ) + ∆2(δ))
]

+ P [R(last(p), a) · countn(p, a) ≥ E[R(last(p), a) · countn(p, a)] + ∆2(δ)]

=
∑
s

P
[
totaln(p · as) ≥ E[totaln(p · as)] + (∆s

1(δ) + ∆2(δ))
]

+ 0

≤ δ . (5.4)

75

5.1 Generalized Monte Carlo tree search

Similarly, when countn(p · as) is big enough, for all δ > 0 it holds that

P
[
totaln(p, a) ≤ E[totaln(p, a)]−

∑
s

(∆s
1(δ) + ∆2(δ))

]
≤ δ . (5.5)

For all s ∈ S and δ > 0,

∆s
1(δ) + ∆2(δ) = 9

(√
countn(p · as) ln

(
4|S|
δ

))
+

1√
2

(√
ln

(
2|S|
δ

))
.

Then, for any s ∈ S, we can have a Cs > 0 big enough such that

∆s
1(δ) + ∆2(δ) ≤ Cs

(√
countn(p · as) ln

(
4|S|
δ

))
.

Take C = maxsCs. Therefore, we have:

∑
s

(∆s
1(δ) + ∆2(δ)) ≤ C

∑
s

√
countn(p · as) ln

(
1

δ

)

≤ C
∑
s

√
countn(p, a) ln

(
1

δ

)

≤ C|S|
√
countn(p, a) ln

(
1

δ

)

So, there is a constant Cp such that for countn(p, a) big enough and any δ > 0, it holds that

∆countn(p,a)(δ) = Cp
√

countn(p, a) ln(1/δ) ≥
∑
s

(∆s
1(δ) + ∆2(δ)) .

Therefore, from Equation 5.4 the following bound holds:

P
[
totaln(p, a) ≥ E[totaln(p, a)] + ∆countn(p,a)(δ)

]
≤ P

[
totaln(p, a) ≥ E[totaln(p, a)] +

∑
s

(∆s
1(δ) + ∆2(δ))

]
≤ δ

Similarly, from Equation 5.5, P
[

totaln(p, a) ≤ E[totaln(p, a)]−∆countn(p,a)(δ)
]
≤ δ.

This proves that for any p, the sequences (xa,t)t≥1 associated with rewardIt(p,a)(p)

satisfy the drift conditions. �

76

5.2 MCTS with symbolic advice

Then, from the properties of sequence of random variables satisfying drifting condi-
tions, we get:

Theorem 5.1
Consider an MDPM , a horizon H and a state s0. Let Vn(s0) (resp. Vn(s0, a)) be a
random variable that represents the value valuen(s0) (resp. valuen(s0, a)) at the root
of the search tree after n iterations of the generalized MCTS algorithm onM . Then,

|E[Vn(s0)]− ValHM(s0)| is bounded by O((lnn)/n).
The failure probability P[arg maxa Vn(s0, a) 6⊆ optHM(s0)] converges to zero as
n tends to infinity.

Proof From Lemma 5.1, we get that the sequences (Xa,t)t≥1 associated with the values
(rewardIt(p,a)(p))t≥1 satisfy the drifting condition in Definition 2.13. Then from Theo-
rem 2.9 and Theorem 2.12, we get the results. �

Note that sampling-based approaches mentioned in section 2.6 are captured by our
general description of the simulation phase. Indeed, if the number of samples c is set to 1,
let I be the set of rewards associated with paths of Paths≤HM , and let f(p) be a probability
distribution over I , such that for every reward RewardM(p′) ∈ I , f(p)(RewardM(p′)) is
the probability of path p′ being selected with a uniform action selections in T (M, s0, H),
starting from the node p. Then, the value valuei(p) drawn at random according to the
distribution f(p) corresponds to the reward of a random sample p · p′ drawn in PathsHM . If
the number of samples c is greater than 1, one simply needs to extend I to be the set of
average rewards over c paths, while f(p) becomes a distribution over average rewards.

5.2 MCTS with symbolic advice

Wewill augment the MCTS algorithm using two advice: a selection advice ϕ to guide
the MCTS tree construction, and a simulation advice ψ to prune the sampling domain.
We assume that the selection advice satisfies the optimality assumption, i.e., ϕ is enforced
by a nondeterministic strategy containing an optimal strategy. Notably, we make no such
assumption for the simulation advice, so that any advice can be used.

77

5.2 MCTS with symbolic advice

Selection phase under advice We use the advice ϕ to prune the tree according to σϕ.
Therefore, from any node p our version of UCT selects, at iteration number i, an action in

arg max
a∈σHϕ (p)

[
valuei−1(p, a) + C

√
ln (counti−1(p))

counti−1(p, a)

]
.

In other words, we are using UCT among actions allowed by the advice.

Simulation phase under advice For the simulation phase, from the node represented by
the path p, a path p ·p′ is sampled according to the advice ψ. Different sampling procedures
are discussed in Section 4.2. This can be interpreted as sampling paths according to a
probability distribution over PathsHM(p, ψ). If there are no p′ such that p · p′ |= ψ, the
simulation phase outputs a value of 0 as it is not possible to satisfy ψ from p. We compute
valuei(p) by averaging the rewards of these samples.

Theoretical analysis

We show that the theoretical guarantees of the MCTS algorithm are still maintained
by the MCTS algorithm under symbolic advice.

Theorem 5.2
Consider an MDPM , a horizon H and a state s0. Let Vn(s0) (resp. Vn(s0, a)) be a
randomvariable that represents the value valuen(s0) (resp. valuen(s0, a)) at the root of
the search tree after n iterations of the MCTS algorithm under an enforceable advice
ϕ satisfying the optimality assumption and a simulation advice ψ. Then, |E[Vn(s0)]−
ValHM(s0)| = O((lnn)/n). Moreover, the failure probability P[arg maxa Vn(s0, a) 6⊆
optHM(s0)] converges to zero as n tends to infinity.

Proof The simulation phase biased by ψ can be described in the formalism of generalized
MCTS, with a domain

I =

{
1

c

c∑
i=1

RewardM(pi) | p1, . . . , pc ∈ Paths≤HT (M,s0,H,ϕ)

}
,

and a mapping fψ from paths p in Paths≤HT (M,s0,H,ϕ) to a probability distribution on I

describing the outcome of a sampling phase launched from the node p. Formally, the weight
of 1

c

∑c
i=1 RewardM(pi) ∈ I in f(p) is the probability of sampling the sequence of paths

p1, . . . , pc in the simulation phase under adviceψ launched from p. Then, fromTheorem5.1,
using MCTS algorithm under an enforceable advice ϕ satisfying the optimality assumption

78

5.2 MCTS with symbolic advice

and a simulation advice ψ in MDPM is same as using generalized MCTS algorithm in the
pruned MDP T (M, s0, H, ϕ).

Theorem 4.1 lets us conclude the proof as those values and strategies are maintained
inM by the optimality assumption. In particular,

|E[Vn(s0)]− ValHT (M,s0,H,ϕ)(s0)| = |E[Vn(s0)]− ValHM(s0)| = O((lnn)/n) .

Also, since optHT (M,s0,H,ϕ) ⊆ optHM(s0), we will have the failure probability inM bounded
by the failure probability in T (M, s0, H, ϕ):

P[arg max
a

Vn(s0, a) 6⊆ optHM(s0)] ≤ P[arg max
a

Vn(s0, a) 6⊆ optHT (M,s0,H,ϕ)(s0)] .

Then,the failure probability P[arg maxa Vn(s0, a) 6⊆ optHM(s0)] converges to zero as n tends
to infinity. �

79

Chapter 6

Applications of MCTS with advice

In this chapter, we give an informal description of our framework and then describe
two applications of the MCTS algorithm with advice. The code of our implementation can
be found here: https://debrajrc.github.io/MCTS-with-advice/

6.1 Description of the framework

Given an encoding of an MDP, a simulator for an MDP needs to do the following
operations: report the current state, report available actions at the state, simulate a legal
action from current state and report the new state and the reward gained. Such a simulator
can be implemented depending on how the MDP is represented. For example, an MDP
can be described in any file format supported by Storm model checker [Deh+17; Hen+22].
In this case, we simulate the MDP using the simulators implemented in Storm (version
1.7.0). Specifically, we use PRISM format [KNP11] to describe an MDP which can be
simulated in Storm without constructing the explicit model. We use Stormpy [JV+22], a
python wrapper on Storm providing several useful APIs.

6.1.1 Monte Carlo tree search

The implementation of MCTS uses such a simulator to find an optimal action during
decision-time planning. The algorithm would have multiple parameters, for example, the
receding horizon it is using, number of new nodes it is adding to the tree, number of
simulations it is running each time a new node is added etc. as described in Section 2.6.

6.1.2 Selection and simulation strategy

The user has option to specify strategies that can be used to select the nodes in the
search tree during the selection phase and to simulate paths during the simulation phase.
By default, the UCT strategy (see Section 2.6) is used as the selection strategy. In that case,
the user provides the constant C in the formula. For simulation, a strategy is used to choose

https://debrajrc.github.io/MCTS-with-advice/

6.2 Application 1: Pacman

actions uniformly at random from the legal actions from a state. But the user can provide
different probabilistic strategy that can be used during simulation.

6.1.3 Selection advice

We use an enforceable advice as a selection advice. The nondeterministic strategy σ
enforcing the selection advice is represented by a function which given a state s of the MDP
would return the set σ(s). This can be implemented for different type of strategies:

Formal methods-based techniques The user gives a logical formula ϕ as an input and
for each action a available in state s, we check whether (s, a) |= ϕ. This creates the
non-deterministic strategy σ where σ(s) = {a | (s, a) |= ϕ}. Instead of the large MDP, a
smaller abstraction of the original MDP can be defined by the user which can be used for
the model checking.

Neural networks The user provides a function that, given a state of the MDP, creates a
tensor (as a NumPy array [Har+20]). A pre-trained neural network (as a Keras [Cho+15]
model saved in HDF5 format) can be used as an input in the implementation. For a neural
network NN and a threshold value δ ∈ (0, 1), we calculate a non-deterministic strategy
σNN,δ where

σNN,δ = {a | NN(s, a) ≥ max
a′

NN(s, a′)} .

Other function-based techniques The user defines a function f : S×A→ R that gives
a value to any state-action pair in the MDP. For a threshold value δ ∈ (0, 1), we calculate a
non-deterministic strategy σf,δ where

σNN,δ = {a | f(s, a) ≥ max
a′

f(s, a′)} .

6.1.4 Simulation advice

Given an advice A as a logical formula ϕA , we check if a path p satisfies the formula
ϕA . This is used for the reject-based approach defined in Section 4.2 where we only allow
sampled paths according to the advice.

6.1.5 Terminal reward

The user provides a function RT : S → R that assigns a value to each states in the
MDP. In general a neural network or an easy to calculate heuristic is used as such function.

81

6.2 Application 1: Pacman

6.2 Application 1: Pacman

We performed our experiments on the game Pac-Man. In this case, we automated
the creation of a PRISM file from a text file describing the grid and the initial position of
Pac-Man and the ghosts. In our experiments, the ghosts always choose an action uniformly
at random from the legal actions available.

6.2.1 The game as an MDP

The game can be seen as a Markov decision process, where states encode a position
for each agent1 and for the food pills in the grid, where actions encode individual Pac-Man
moves, and where stochastic transitions encode the moves of ghosts according to their
probabilistic models. For each state and action pair, we define a reward based on the score
gained or lost by this move, as explained in Example 1.1. We also assign a terminal reward
to each state, so as to allow MCTS to compare paths of length H which would otherwise
obtain the same score. Intuitively, better terminal rewards are given to states where Pac-
Man is closer to the food pills and further away from the ghosts, so that terminal rewards
play the role of a static evaluation of positions.

6.2.2 Advice

The simulation advice ψ that we consider is defined as a safety property satisfied by
every path such that Pac-Man does not make contact with a ghost, as in Example 4.2. With
a Boolean formula encoding ψ, one can use a SAT solver to obtain samples, or sampling
tools as described in Proposition 4.2, such as WeightGen [Cha+14]. Alternatively, the tool
UniGen [Cha+15] can be used to sample almost uniformly over the satisfying assignments
of ψ.2 Several techniques were used to reduce the state-space of the MDP in order to obtain
smaller Boolean formulæ. For example, a ghost that is too far away with respect to H can
be safely ignored, and the current positions of the food pills is not relevant for safety. But in
our experiments, the reject based method for sampling is much faster than the SAT-based
sampling and gave similar performance in terms of win-rate.

1The last action played by ghosts should be stored as well, as they are not able to reverse their direction.
2The distribution over path is slightly different than when sampling uniformly over actions in the pruned

MDP T (M, s0, H, ψ), but UniGen enjoys better performances than WeightGen.

82

6.2 Application 1: Pacman

As a selection advice, during the exploration of the search tree, we restrict ourselves to
actions a that maximize the probability to stay safe for the next 8 steps, i.e., actions a such
that η8(s, a) = maxa′∈A η8(s, a′) as defined in Section 4.5. Since the online computation of
the η8 function is too expensive to be done at every node of the search tree, we only restrict
the root node of the tree to ensure the safety of the immediate decisions.

6.2.3 Experiments

We experimented on the grid of size 9 × 21 described in Figure 1.1. We used a
receding horizon H = 10. The baseline is given by a standard implementation of the
algorithm described in Section 2.6. A search tree is constructed with a maximum depth
H , for 40 iterations, so that the search tree constructed by the MCTS algorithm contains
up to 40 nodes. At the first selection of every node, 20 samples are obtained by using a
uniform policy. Overall, this represents a tiny portion of the tree unfolding of depth 10,
which underlines the importance of properly guiding the search to the most interesting
neighbourhoods. As a point of reference, we also had human players take control of Pac-
Man, and computed the same statistics. The players had the ability to slow down the game
as they saw fit, as we aimed for a comparison between the quality of the strategical decisions
made by these approaches, and not of their reaction speeds.

We compare these baselines with the algorithm of Section 5.2, using the advice
mentioned before.

Several techniques were used to reduce the state-space of the MDP in order to obtain
smaller formulæ. For example, a ghost that is too far away with respect to H can be safely
ignored, and the current positions of the food pills is not relevant for safety.

6.2.4 Results

A summary of our results is displayed in Table 6.1. We mainly use the number of
games won out of 100 to evaluate the performance of our algorithms. The win, loss and
draw columns denote win/loss/draw rates in percents (the game ends in a draw after 300
game steps). The food eaten column refers to the number of food pills eaten on average,
out of 25 food pills in total. Score refers to the average score obtained over all runs.

83

6.3 Application 2 : safe and optimal scheduling of tasks

Algorithm win loss draw food score

MCTS 8 87 5 12.85 -383.63
MCTS + selection advice 36 25 39 20.08 28.82
MCTS + simulation advice 55 44 1 19.58 153.62

MCTS + both advice 90 9 1 24.39 512.13

Uniform 0 100 0 2.35 -498.25
Uniform + selection advice 5 30 65 15.64 -215.71

Human 44 56 0 18.87 57.76

Table 6.1: Summary of experiments with different ghost models, algorithms.

The baseline MCTS algorithm wins 8% of games. Adding the selection advice results
in an increase of the win rate to 36%. The average score is improved as expected, but
even if one ignores the ±500 score associated with a win or a loss, we observe that more
food pills were eaten on average as well. The simulation advice provides a increase in both
win rate (achieving 55%) and average score. Using both advice at the same time gave the
best results overall, with a win rate of 90%. Moreover, the simulation advice significantly
reduces the number of game turns Pac-Man needs to win, resulting in fewer game draws.

In an older implementation described in [BCR20], from the simulation advice ψ, we
extracted whenever possible a strongly enforceable selection advice ϕ that guarantees that
Pac-Man will not make contact with a ghost, as described in Example 4.3. If safety cannot
be enforced, the universal advice > is used as a selection advice, so that no pruning is
performed. This is implemented by using the Boolean formula ψ in a QBF solver according
to Lemma 4.2. For performance reasons, we could only guarantee safety for much smaller
horizon than 10, that we fixed at 3 in our experiments. With this selection advice and the
simulation advice ψ, we achieved 85% win-rate.

6.3 Application 2 : safe and optimal scheduling of tasks

We consider a setting in which we are given the structure of a task system Υ =

((τi)i∈I , F,H) (described in Section 2.7) to schedule. While the structure of the system is
known, the actual distributions that describe the behaviour of the tasks are unknown and
need to be learnt to behave optimally or near optimally. The learning must be done only by
observing the jobs that arrive along time. When the task system contains some hard tasks
(H 6= ∅), all deadlines of such tasks must be enforced.

84

6.3 Application 2 : safe and optimal scheduling of tasks

After the system is efficiently learnt, then we find and safe and (near) optimal strategy
in the MDP of the Task system.

6.3.1 Model-Based Learning of task systems

For learning the inter-arrival time distribution of a task, a sample corresponds to
observing the time difference between the arrivals of two consecutive jobs of that task. For
learning the computation time distribution, a sample corresponds to observing the CPU
time a job of the task has been assigned up to completion. Thus, if a job does not finish
execution before its deadline, we do not obtain a valid sample for the computation time.
Given a class of task systems, we say:

The class is probably approximately correct (PAC) learnable if there is an algorithm
L such that for all task systems Υ in this class, for all ε, γ ∈ (0, 1): given struct(Υ),
the algorithmL can execute the task systemΥ, and can computeΥ′ such thatΥ ≈ε Υ′,
with probability at least 1− γ.
The class is safely PAC learnable if it is PAC learnable, and L can ensure safety for
the hard tasks while computing Υ′.
The class is (safely) efficiently PAC learnable3 if it is (safely) PAC learnable, and
there is a polynomial q in the size of the task system, in 1

ε
, and in 1

γ
, s.t. L obtains

enough samples to compute Υ′ in a time bounded by q.

Efficient PAC learning for soft tasks Let Υ = ((τi)i∈I , F, ∅) be a task system with soft
tasks only, and let ε, γ ∈ (0, 1). We assume that for all distributions d occurring in the
models of the tasks in Υ: mina∈Supp(d) d(a) > ε. To learn a model Υ′ which is ε-close to Υ

with probability at least 1− γ, we apply Lemma 2.1 in the following algorithm:

1. for all tasks i = 1, 2, · · · ∈ F , repeat the following learning phase:
Always schedule task τi when a job of this task is active. This way, collect enough
samples S(Ai) of Ai and S(Ci) of Ci as observed to apply Lemma 2.1 and obtain the
desired accuracy as fixed by ε and γ.

2. the models of inter-arrival time distribution and computation time distribution for
task τi are the relative frequencies d(S(Ai)) and d(S(Ci)) respectively.

3Note that our notion of efficient PAC learning is stronger than the definition used in classical PAC learning
terminology [Val84] since we take into account the time that is needed to get samples and not only the number
of samples needed.

85

6.3 Application 2 : safe and optimal scheduling of tasks

It follows that task systems with only soft tasks are efficiently PAC learnable:

Theorem 6.1
There is a learning algorithm such that for all task systems Υ = ((τi)i∈I , F,H) with
H = ∅, for all ε, γ ∈ (0, 1), the algorithm learns a model Υ′ such that Υ′ ≈ε Υ with
probability at least 1− γ after executing Υ for |F | ·Amax ·D · d 1

2ε2
(ln 4D|F | − ln γ)e

steps where D = maxi∈[n](|Supp(Ai)|).

Proof Using Lemma 2.1, given ε, γ′ ∈ (0, 1), for every distribution d of the task system,
a sequence S of D · d 1

2ε2
(ln 2D − ln γ′)e i.i.d. samples suffices to have d(S) ∼ε d with

probability at least 1 − γ′. Since in the task system Υ, there are 2|F | distributions,
with probability at least 1 − 2|F |γ′, we have that the learnt model Υ′ ≈ε Υ. Thus, for
γ′ = γ

2|F | , and using 2 exp(−2mε2) ≤ γ
2|F |D , we have that for each distribution, a sequence

of D · d 1
2ε2

(ln 4D|F | − ln γ)e samples suffices so that Υ′ ≈ε Υ with probability at least
1− γ.

We collect samples for |F | soft task by scheduling one soft task after another. For each
soft task, samples for computation time distribution and inter-arrival time distribution can
be collected simultaneously, and observing each sample takes a maximum of Amax time
steps. This proves the result. �

Safe learning with hard tasks We turn to task systems Υ = ((τi)i∈I , F,H) with both
hard and soft tasks. The learning algorithm must ensure that all the jobs of hard tasks meet
their deadlines while learning the task distributions. The soft-task-only algorithm is clearly
not valid for that more general case. Recall we have assumed schedulability of the task
system for the hard tasks4. This is a necessary condition for safe learning but it is not a
sufficient condition. Indeed, to apply Lemma 2.1, we need enough samples for all tasks
i ∈ H ∪ F .

First, we note that when executing any safe strategy for the hard tasks, we will observe
enough samples for the hard tasks. Indeed, under a safe strategy for the hard tasks, any job
of a hard task that enters the system will be executed to completion before its deadline. We
then observe the value of the inter-arrival and computation times for all the jobs of hard
tasks that enter the system. Unfortunately, this is not necessarily the case for soft tasks
when they execute in the presence of hard tasks. Indeed, it is in general not possible to

4Note that safety synthesis already identifies task systems that violate this condition.

86

6.3 Application 2 : safe and optimal scheduling of tasks

schedule all the jobs of soft tasks up to completion. We thus need stronger conditions in
order to be able to learn the distributions of the soft tasks while ensuring safety.

PAC guarantees for safe learning Our condition to ensure safe PAC learnability relies
on properties of the safe regionM safe

Υ in the MDPMΥ associated to the task system Υ.

Definition 6.1 (Good for sampling condition)
The safe regionM safe

Υ of the task system Υ = ((τi)i∈I , F,H) is good for sampling if
for all soft tasks i ∈ F , there exists a state si ∈M safe

Υ such that:
a new job of task i enters the system in si; and
there exists a strategy σi of Scheduler that is compatible with the set of safe
schedules for the hard tasks so that from si, under strategy σi, the new job
associated to task τi is guaranteed to reach completion before its deadline.

There is an algorithm that executes in polynomial time in the size of the MDPM safe
Υ

which decides if M safe
Υ is good for sampling. Also, remember that only the knowledge of

the structure of the task system is needed to computeM safe
Υ .

Given a task systemM safe
Υ that is good for sampling, given any ε, γ ∈ (0, 1), we safely

learn a model Υ′ which is ε-close to Υ with probability at least 1− γ (PAC guarantees) by
applying the following algorithm:

1. Choose any safe strategy σH for the hard tasks, and apply it until enough samples
(S(Ai),S(Ci)) for each i ∈ H have been collected according to Lemma 2.1. The
models for tasks i ∈ H are d(S(Ai)) and d(S(Ci)).

2. Then for each i ∈ F , apply the following phases:
(a). from the current vertex s, schedule some task uniformly at random among the

set of tasks that correspond to the safe edges in safe(s) up to reaching some
si (while choosing tasks that do not violate safety uniformly at random, we
reach some si with probability 1.5 The existence of a si is guaranteed by the
hypothesis thatM safe

Υ is good for sampling).
(b). from si, apply the strategy σi as defined by the second condition in the good for

sampling condition. This way we are guaranteed to observe the computation
time requested by the new job of task i that entered the system in vertex si, no
matter how TaskGen behaves. At the completion of this job of task i, we have

5This follows from the fact that there is a single MEC in the MDP by Lemma 2.8.

87

6.3 Application 2 : safe and optimal scheduling of tasks

collected a valid sample of task i.
(c). go back to (a) until enough samples (S(Ai),S(Ci)) have been collected for soft

task i according to Lemma 2.1.

The properties of the learning algorithm above are used to prove that:

Theorem 6.2
There is a learning algorithm such that for all task systems Υ = ((τi)i∈I , F,H) with a
safe regionM safe

Υ that is good for sampling, for all ε, γ ∈ (0, 1), the algorithm learns
a model Υ′ such that Υ′ ≈ε Υ with probability at least 1− γ.

Proof For the hard tasks, as mentioned above, we can learn the distributions by applying
the safe strategy σH to collect enough samples (S(Ai),S(Ci)) for each i ∈ H .

We assume an order on the set of soft tasks. First for all τi for i ∈ F , since M safe
Υ

is good for sampling, we note that the set Si of states si (as defined in the definition of
good for sampling condition) is non-empty. Recall from Lemma 2.8 thatM safe

Υ has a single
MEC. Thus, from every state ofM safe

Υ , Scheduler by playing uniformly at random reaches
some si ∈ Si with probability 1, and hence can visit the vertices of Si infinitely often with
probability 1. Now given ε and γ, using Theorem 6.1, we can compute an m, the number
of samples corresponding to each distribution required for safe PAC learning of the task
system. Since by playing uniformly at random, Scheduler has a strategy to visit the vertices
of Si infinitely often with probability 1, it is thus possible to visit these vertices at least m
times with arbitrarily high probability.

Also, after we safely PAC learn the distributions for task τi, since there is a single MEC
in M safe

Υ , there exists a uniform memoryless strategy to visit a state si+1 corresponding to
task τi+1 with probability 1. Hence, the result. �

In the algorithm above, to obtain one sample of a soft task, we need to reach a particular
vertex si from which we can safely schedule a new job for the task i up to completion. As
the underlying MDPM safe

Υ can be large (exponential in the description of the task system),
we cannot bound by a polynomial the time needed to get the next sample in the learning
algorithm. So, this algorithm does not guarantee efficient PAC learning. We develop in the
next paragraph a stronger condition to guarantee efficient PAC learning.

88

6.3 Application 2 : safe and optimal scheduling of tasks

Definition 6.2 (Good for efficient sampling)
The safe region M safe

Υ of the task system Υ = ((τi)i∈I , F,H) is good for efficient
sampling if there exists K ∈ N which is bounded polynomially in the size of Υ =

((τi)i∈I , F,H), and if, for all soft tasks i ∈ F the two following conditions hold:
1. let Ssafe

0 be the set of Scheduler vertices inM safe
Υ . There is a non-empty subset

Safei ⊆ Ssafe
0 of states fromwhich there is a strategyσi for Scheduler to schedule

safely the tasks H ∪ {i} (i.e. all hard tasks and the task i); and
2. for all s ∈ Ssafe

0 , i ∈ F , there is a uniform memoryless strategy σ�Safei s.t.:
(a). σ�Safei is compatible with the safe strategies (for the hard tasks) ofM safe

Υ ;
(b). when σ�Safei is executed from any s ∈ Ssafe

0 , then the set Safei is reached
within K steps. By Lemma 2.8, since M safe

Υ has a single MEC, we have
that Safei is reachable from every v ∈ Ssafe

0 .

Here again, the condition can be efficiently decided: there is a polynomial-time
algorithm in the size ofM safe

Υ that decides ifM safe
Υ is good for efficient sampling.

Given a task system M safe
Υ that is good for efficient sampling, given ε, γ ∈ (0, 1), we

safely and efficiently learn a model Υ′ which is ε-close of Υ with probability at least than
1− γ (efficient PAC guarantees) by applying the following algorithm:

1. Choose any safe strategy σH for the hard tasks, and apply this strategy until enough
samples (S(Ai),S(Ci)) for each i ∈ H have been collected according to Lemma 2.1.
The models for tasks i ∈ H are the relative frequencies d(S(Ai)) and d(S(Ci)).

2. Then for each i ∈ F , apply the following phase:
(a). from the current state s, play σ�Safei to reach the set Safei.
(b). from the current state in Safei, apply the strategy σi as defined above. This way

we are guaranteed to observe the computation time requested by all the jobs of
task i that enter the system.

(c). go to (b) until enough samples (S(Ai),S(Ci)) are collected for task i as per
Lemma 2.1. The models for task i are given by d(S(Ai)) and d(S(Ci)).

For a task system Υ, let T = Amax · D · d 1
2ε2

(ln 4D|Υ| − ln γ)e where Amax =

max(
⋃
i∈[n] Supp(Ai)) and D = maxi∈[n](|Supp(Ai)|). The properties of the learning

algorithm above are used to prove the following theorem:

89

6.3 Application 2 : safe and optimal scheduling of tasks

Theorem 6.3
There exists a learning algorithm such that for all task systems Υ = ((τi)i∈I , F,H)

with a safe region M safe
Υ that is good for efficient sampling, for all ε, γ ∈ (0, 1), the

algorithm learns a model Υ′ such that Υ′ ≈ε Υ with probability at least 1− γ after
scheduling Υ for T + |F | · (T +K) steps.

Proof Consider the algorithm described above. Since σH is a safe strategy for the hard
tasks, we can observe the samples corresponding to the computation time distribution and
the inter-arrival time distribution for all the hard tasks simultaneously while scheduling the
system. Following the proof of Theorem 6.1, the samples required to learn the distributions
of the hard tasks can be observed in time T .

Now consider an order on the set of tasks. Under the good for efficient sampling
condition, again from the proof of Theorem 6.1, we need to execute the system for |F |T
time steps for collecting samples to PAC learn the computation time distributions and the
inter-arrival time distributions for all soft tasks in F . Further, for every soft task τi with
i ∈ F , from a state in Ssafe

0 , by using the strategy σ�Safei , we reach Safei in at mostK steps.
Hence, the result. �

Example 6.1 Consider the following task system with one hard and one soft task. We want
to learn the distributions associated to the tasks in the system.

one hard task τh = 〈Ch, 2, Ah〉 such that Ch(2) = 1 and Ah(4) = 1; and
one soft task τs = 〈Cs, 2, As〉 such that Supp(Cs) = {1, 2}Cs(1) = 0.4,Cs(2) = 0.6,
and As(3) = 1; and the cost function c such that c(τs) = 10.

In particular, we want to learn computation time distribution for the soft task. We
can see that during the execution of the task system, for every time t, Scheduler does not
have a safe strategy from t that also ensures that the soft task will never miss a deadline.
This implies that considering the good for efficient sampling condition, we have Safei = ∅
for i ∈ F , and hence the good for efficient sampling condition is not satisfied by this task
system. Thus, we cannot ensure safe and efficient PAC learning for this task system.

On the other hand, there exists a strategy such that for all the jobs of the soft task that
arrive at time lcm(4, 3) · n + 6 = 12n + 6 (assuming that the system starts executing at
time 0) for n ≥ 0 can be scheduled to completion, and thus by Theorem 6.2, there exists an
algorithm to safely PAC learn the task system. �

90

6.3 Application 2 : safe and optimal scheduling of tasks

Using the learnt model Given a system Υ of tasks, and parameters ε, γ ∈ (0, 1), once
we have learnt a model Υ′ such that Υ′ ≈ε Υ, we construct the MDPM safe

Υ′ . FromM safe
Υ′ ,

we can compute an optimal scheduling strategy that minimizes the expected mean-cost of
missing deadlines of soft tasks. Such an algorithm is given in [GGR18]. Then, we execute
the actual task system Υ under schedule σ. However, since σ has been computed using the
model Υ′, it might not be optimal in the original, unknown task system Υ. Nevertheless,
we can bound the difference between the optimal values obtained inM safe

Υ′ andM safe
Υ .

The following lemma relates the model that is learnt with the approximate distribution
that we have in the MDP corresponding to the learnt model. Let πΥ

max be the maximum
probability appearing in Υ. Given ε ∈ (0, 1), let β = min{1, πΥ

max + ε} and η = β2n −
(β − ε)2n, where n = |Υ|.

Lemma 6.1
Let Υ be a task system, let ε, γ ∈ (0, 1), let Υ′ be the learnt model such that Υ′ ≈ε Υ

with probability at least 1 − γ. Then we have that ΓΥ′ ≈η ΓΥ with probability at
least 1− γ.

Proof Since we have thatΥ′ ≈ε Υwith probability at least 1−γ, by definition, we have that
the probability that all the distributions of Υ′ are ε-close to their corresponding distributions
in Υ is at least 1−γ. Let |Υ| = n, and there are a total of 2n distributions. Let P and P ′ be
the probability distributions in the MDPsMγ andMγ′ respectively. Thus corresponding to
P inMγ , if an edge has probability p = p1p2 · · · p2n, and for P ′ we have the corresponding

probability as p′, then |p′ − p| ≤
2n∏
i=1

(p′i)−
2n∏
i=1

(pi), where p′i is the estimation of pi in P ′,

and is such that p′i ≤ min{1, pi + ε}, since each estimated probability in the distribution P ′

is also bounded above by 1. Now p′i ≤ β for all i ∈ [2n], and we have that
2n∏
i=1

p′i −
2n∏
i=1

(pi) ≤ β2n − (β − ε)2n

Thus, P ′ ∼η P with probability at least 1− γ. �

Using Lemma 6.1 and Lemma 2.2, we obtain the following guarantees on the quality
of the strategy that our model-based learning algorithm outputs:

Theorem 6.4
Suppose we are given a task system Υ (with min probability pmin) and a robustness
precision β ∈ (0, 1). Let γ, ε ∈ (0, 1) be s.t. ε ≤ βpmin

8|S|+β·pmin
. Let ΥM be the model

91

6.3 Application 2 : safe and optimal scheduling of tasks

that is learnt using the above algorithms s.t. ΥM ≈ε Υ with probability at least 1−γ,
and let σ be a memoryless deterministic expectation-optimal strategy of ΓΥM . Then,
with probability at least 1− γ, the expected mean-cost of playing σ in ΓΥ (i.e. in the
task system Υ) is s.t. for all s ∈ S: |ValM(s, σ)− ValM(s)| ≤ β.

6.3.2 Experimental results

We first report experimental results on model-based learning and observe that the
models are learnt efficiently with only a few samples. We compare the performance of
our MCTS-based algorithms with a state-of-the-art deep Q-learning implementation from
OpenAI [Dha+17] on a set of benchmarks of task systems of various sizes.

Models with only soft tasks In Figure 6.1, we show that the distributions of a task system
with soft tasks can be learnt efficiently with a few samples. This is not the case in general
for arbitrary MDPs where in order to collect samples, one may need to reach some specific
states of the MDP, and it may take a considerable amount of time to reach such states.
However, in this case of systems with only soft tasks, the number of samples increases
linearly with time. As a representative task system, we display the learning curve for a
system with six soft tasks in Figure 6.1.

0

200

400

600

800

0

0.1

0.2

0.3

0.4

0.5

10
0

50
0

90
0

13
00

17
00

21
00

25
00

29
00

33
00

37
00

41
00

45
00

49
00

53
00

57
00

61
00

65
00

69
00

73
00

77
00M
ax
	-n

or
m
	d
Is
ta
nc
e	
fr
om

	a
ct
ua
l	

di
st
rib

ut
io
ns

Training	steps

Distance	between	learnt	and	actual	distributions
Max	norm	exe Max	norm	arr

Exe	samples Arr	samples

Figure 6.1: Learning distributions for a system with 6 soft tasks

Here “exe” and “arr” refer to the distributions of the computation times and the inter-
arrival times respectively. The left y-axis is themax-normdistance between the probabilities

92

6.3 Application 2 : safe and optimal scheduling of tasks

in the actual distributions and the learnt distributions across all soft tasks. The x-axis is
the number of time steps over which the system is executed. For learning the computation
time distribution, the soft tasks are scheduled in a round-robin manner. Once a job of a soft
task is scheduled, it is executed until completion without being preempted. A sample for
learning the computation time distribution of a soft task thus corresponds to a job of the task
that is scheduled to execute until completion. Since the system has only soft tasks, a job
can always be executed to finish its execution without safety being violated. On the other
hand, the samples for learning the inter-arrival time distribution for each task correspond
to all the jobs of the task that arrive in the system. Thus, over a time duration, for each task,
the number of samples collected for learning the inter-arrival time distribution is larger
than the number of samples collected for learning the computation time distribution. The
number of samples of both kinds increases linearly with time. The y-axis on the right
corresponds to the number of samples collected over a duration of time when the system
executes. The plot “Exe samples” corresponds to the number of samples collected per task
for learning the computation time distributions. Since the tasks are executed in a round-
robin manner, the tasks have an equal number of samples for learning their computation
time distributions. On the other hand, for learning inter-arrival time distributions, a task
with larger inter-arrival time produces fewer samples than a task with smaller inter-arrival
time. The plot “Arr samples” corresponds to the minimum of the number of jobs, over all
the tasks, that arrived in the system. Each point in the graphs is obtained as a result of
averaging over 50 simulations.

Safe model-based learning For safe model-based learning of systems with both hard
and soft tasks, first, we verify that the task system satisfies the good for efficient sampling
condition, and hence admits safe efficient PAC learning. We consider a small representative
task system, and learn the distributions of the soft tasks in the system as shown in Figure 6.2.
Using the learnt model in Storm, we also extracted the strategy that minimizes the expected
mean cost. This strategy is then applied on the actual task system, and we report the
observed value. In the X-axis, we have the number of discrete time steps over which
samples corresponding to all soft tasks are collected. The result of each time point is an
average over 10 experiments. We note that for samples collected over a few hundred discrete
time steps, the optimal strategy for the learnt system is also optimal for the original task
system. For fewer training steps than that shown in Figure 6.2, we observed that for some
experiments the learnt task system (and hence the correspondingMDP) was not structurally
similar to the original task system in the sense that some distributions in the learnt model
did not have the same support as those in the original task system. The results show that

93

6.3 Application 2 : safe and optimal scheduling of tasks

0.2814
0.2816
0.2818
0.282
0.2822
0.2824
0.2826
0.2828
0.283

900 1050 1200 1350 1500 1650 1800 1950 2100 2250O
bs
er
ve
d	
va
lu
e	
by
	a
pp
ly
in
g	
le
ar
nt
	

st
ra
te
gy

Training	steps

Value	from	Storm	for	original	task	system:	
0.28175

Figure 6.2: Model-based learning for 1 hard, 3 soft tasks

this approach is effective in terms of the quality of learning and the number of samples
required.

Monte Carlo tree search In the above approach, the main bottleneck towards scalability
is the extraction of an optimal strategy from the learnt model using probabilistic model-
checkers like Storm. This is because the underlying MDP grows exponentially with the
number of tasks. Therefore, we advocate the use of receding horizon techniques instead,
that optimize the cost based on the next H steps for some horizon H . In our examples, the
unfoldings have approximately 2H states, so we use MCTS to explore them in a scalable
way. We used two advice that are enforced by these following strategies:

1. Earliest deadline first strategy for hard tasks (EDF) The earliest deadline first
(EDF) on hard task is a strategy for scheduler that ensures no hard tasks misses its deadline
by always scheduling the job of a hard task with the closest deadline [But11, Section 4.4].
A job by soft task is scheduled only when no hard task is available. This ensures that all
jobs of hard tasks are scheduled in time as the task system is schedulable for the hard tasks,
but does not guarantee optimality with respect to cost. In spite of this drawback, it is a
strategy that can be used for an advice because it is easy to calculate and therefore can be
calculated on-the-fly while doing MCTS.

2. Most general strategy (MGS) We can consider the underlying game graph of the
MDP. There we have a safety game where the objective for player 0 (the Scheduler) is

94

6.3 Application 2 : safe and optimal scheduling of tasks

to avoid the state marked with ⊥ denoting the states where a job generated by a hard
task has missed its deadline. We calculated the most general strategy in this game using
AbsSynthe [Bre+14]. This strategy is more complete, but on the other hand, it needs to be
precomputed.

Deep Q-learning One of the most successful model-free learning algorithm is the Q-
learning algorithm, due to Watkins and Dayan [WD92]. It aims at learning (near) optimal
strategies in a (partially unknown)MDP for the discounted sum objective. In our scheduling
problem, we search for (near) optimal strategies for the mean-cost and not for the discounted
sum, as we want to minimize the limit average of the cost of missing deadlines of soft tasks.
However, if the discount factor is close to 1, both values coincide [Sol03; MN81]. In
our experiments, we use an implementation of deep Q-learning available in the OpenAI
repository [Dha+17]. We make use of shielding [Cha+17a; Als+18; Avn+19], a technique
that restricts actions in the learning process so that only those actions that are safe for
the hard tasks can be used. More specifically, we used the earliest deadline first (EDF)
strategy and the most general (MGS) strategy for safety to shield unsafe actions during deep
Q-learning.

Experiments We compare some variants of model-based learning using MCTS and deep
Q-learning in the context of scheduling. The first option is to set a very high penalty on
missing the deadline of a hard task, and then to apply either MCTS or deep Q-learning.
However, safety is not guaranteed in this case, and we report on whether a violation was
observed or not. We call this variant unsafe MCTS and unsafe deepQ-learning respectively
as a consequence. The second option is to enforce safety in MCTS and deep Q-learning
by computing the most general safe scheduler for hard tasks, and then using it as advice
for MCTS or the MGS shield for deep Q-learning. The third option is to use the earliest-
deadline-first (EDF) scheme on hard tasks instead of MGS as an advice or a shield. Note
that the second and the third options are required to ensure safety, and thus are applicable
to systems that have at least one hard task, and hence are not applicable (NA) to systems
with only soft tasks.

We used a heuristic terminal reward during MCTS where for each soft tasks, we check
if its job can be finished before deadline if we allow all the hard tasks and all soft tasks
with higher cost to finish first. We add the costs for all these tasks which may miss their
deadline. This works as a good and easy to compute terminal reward.

95

6.3 Application 2 : safe and optimal scheduling of tasks

Task size Storm
output

MCTS
unsafe

MCTS
MGS

MCTS
EDF

Deep-Q
unsafe

Deep-Q
MGS

Deep-Q
EDF

4S 105 0.38 0.52 NA NA 0.56 NA NA
5S 106 T.O. 0 NA NA 0.13 NA NA
10S 1018 T.O. 0 NA NA 0.96 NA NA
simple 102 0 0.72 0 0 1.08 0.1 0
1H, 2S 104 0.07 0.67 0.14 0.28 0.24 0.11 0.22
1H, 3S 105 0.28 1.13 0.45 0.49 ∞ 0.47 0.47
2H, 1S 104 0 0.92 0 0.2 ∞ 0.02 0.3
2H, 5S 1010 T.O. 3.44 1.93 2.14 ∞ 2.39 2.48
3H, 6S 1014 T.O. 4.17 2.88 2.97 ∞ 3.42 3.47
2H, 10S 1022 T.O. 0.3 0.03 0.03 ∞ 1.42 1.6
4H, 12S 1030 T.O. 2.1 1.2 1.3 ∞ 2.68 2.87

Table 6.2: Comparison of MCTS and reinforcement learning.

Results

In the first column of Table 6.2, we describe the task systems that we consider. A
description 2H, 5S refers to a task system with two hard tasks and five soft tasks, while 4S
refers to a task system with four soft tasks and no hard tasks. The output of Storm for the
smaller task systems is given in the third column. We report sizes of the MDPs, computed
with Storm whenever possible. Otherwise we report an approximation of the size of the
state space obtained by taking the product of (ci + 1)(ai + 1) over the set of tasks, where ci
and ai are the greatest elements in the support of the distributions Ci andAi. Recall that the
size of the state space is exponential in the number of tasks in the system. In the columns
where safety is not guaranteed,∞ denotes an observed violation (a missed deadline for a
hard task).

For MCTS, at every step we explore 500 nodes of the unfolding of horizon 30, and the
value of each node is initialized using 100 uniform simulations. This computation takes
1-4 minutes in our Python implementation for different benchmarks, running on a standard
laptop. It is reasonable to believe that a substantial speedup could be obtained with well-
optimised code and parallelism. For deep Q-learning, we train each task system for 10000

steps. The implementation of deep-Q learning in the OepnAI respository uses the Adam
optimizer [KB15]. The size of the replay buffer is set to 2000 and the learning rate used
is 10−3. The probability ε of taking a random action is initially set to 1. This parameter
reduces over the training steps, and becomes equal to 0.02 at the end of the training. The

96

6.3 Application 2 : safe and optimal scheduling of tasks

network used is a multi-layer perceptron which, by default, uses two fully connected hidden
layers, each with 64 nodes. Since we are interested in mean-cost objective, the discount
factor γ is set to 1. We observed that reducing the value of γ leads to poorer results. The
values reported for both MCTS and deep Q-learning are obtained as an average cost over
600 steps.

While deep Q-learning provides good results for small task systems with 3-4 tasks
with several thousands of states, this method does not perform well for the benchmarks with
large number of tasks. We trained the task system with 10 soft tasks with deep Q-learning
for several million steps, but the state space was found to be too large to learn a good
strategy, and the resulting output produced a cost that is much higher than that observed
with MCTS.

Overall, our experimental results show that MCTS consistently provides better results,
in particular when the task systems are large, with huge state spaces. This can be explained
by the fact that MCTS optimizes locally using information about multiple possible “futures”
while deep Q-learning rather optimizes globally using information about the uniquely
observed trace. We observe that the performance of MCTS with EDF advice is only
slightly worse than MCTS with MGS advice. EDF guarantees safety and does not require
computing the most general safe strategy, therefore it forms a good heuristic for systems
with many hard tasks, where MGS computation becomes too expensive.

97

Chapter 7

Imitation learning

In previous chapters, we have described different strategies based on a combination of
formal methods and Monte Carlo tree search algorithm that aim for the optimal expected
total reward. These expert receding horizon strategies may be too costly to compute online.
In order to reach on-the-fly computing times low enough for real-time control, we propose
the use of learning techniques to train learned strategies, encoded as neural networks, with
the goal of imitating a given expert strategy.

This can take different forms depending on the expert strategy σ. In general, we define
a function fσ : S ×A→ R encoding the strategy σ so that from state s, the decision made
by σ is equivalent to choosing an action from arg maxa∈A(fσ(s, a)) uniformly at random.
Intuitively, fσ is a scoring function that rates how good every action is from the current
state. To learn a memoryless strategy σ, this function can output the expected total reward
under σ, or a heuristic score approximating it as returned by MCTS for example. In this
case, the advice is seen as a (non-deterministic) expert strategy to be imitated. This way,
we suggest that a symbolic advice can also be imitated by a neural network that can then
be used as a neural advice in MCTS.

The plan is to train a neural network to learn the function fσ as an offline step, then
to use it to speed up the computations of decision-time planning. Depending on the size of
the set of actions, we can either learn a neural network that takes a state-action pair (s, a)

as input and outputs a single value fσ(s, a) or a neural network that takes a state s as input
and outputs a vector in R|A| containing values for each available actions.

We address the following challenges:

representing a state s and its corresponding values (fσ(s, a))a∈A so that it is easily
processable by the neural network,
generating data for fσ representative of the state-space,
choosing an architecture for the neural network,
comparing the learnt strategy and the expert strategy σ.

7.1 Training a neural network

7.1 Training a neural network

We propose the use of convolutional neural networks which would take a state in the
MDP as a tensor with each channels of the tensor representing different features extracted
from the state.

Example 7.1 In Pac-Man, each tensor representing a state has 7 channels to denote
respectively the distribution of walls, food pills, position of Pac-Man, and for each direction,
positions of the ghosts who are moving towards that direction. For example the channel
representing the distribution of walls would be a matrix wij of the size of the grid where
wij = 1 if there is a wall at the co-ordinate (i, j), and otherwise wij = 0. �

Normalization of data We considered different approaches for normalization to make
the outputs between 0 and 1. For example,

Globally scaling the values between 0 and 1 so that mins,a f(s, a) becomes 0 and
maxs,a f(s, a) becomes 1 after normalization.
Locally scaling the values so that for all state s, mina f(s, a) becomes 0 and
maxa f(s, a) becomes 1.

We argue that this local normalization is sufficient to learn the strategy as it captures the
ordering of the actions. Experimentally, local normalization performed better than global
normalization. We also experimented with non-linear transformations [BC64; YJ00] but
they did not improve learning performances in our settings.

Description of the network Our neural networks contain a 2D convolution layer with
3× 3 filters, a flattening layer, few hidden dense layers with the ReLU activation function
and a final dense layer with the sigmoid activation function. Training is performed using
ADAM optimizer with mean squared error as loss function. To choose the optimal hy-
perparameters, e.g. the exact number of layers and their size or the number of filters, we
use hyperparameter tuning in each setting. In particular, we relied on the Python library
KerasTuner [OMa+19].

99

7.2 Dataset aggregration : Formally sharp DAgger

7.2 Dataset aggregration : Formally sharp DAgger

Let us detail how to construct a set of data of the shape (x, y), where x ∈ S is the
input of the neural network and y ∈ R|A| is its output encoding (fσ(x, a))a∈A. We argue
for the use of formal methods in order to answer the two following challenges: how to get
a representative set of input values x, and how to get good y values for this set of input.

Perfect data Note that an expert strategy generated by an exact method (such as mode
checking) is ensured an expected payoff higher than any expert strategy generated from a
heuristic approach like Monte Carlo tree search. In a sense, if one sees a heuristic approach
as an approximation of the optimal strategy, the data obtained from heuristic strategies can
be seen as a noisy version of data that would otherwise be “perfect”, i.e. pairs (x, y) where
y is a vector encoding the decisions of a strategy σ that is optimal.

Representative set of inputs In order to generate a dataset to train on, a classical method
is to pick states and actions uniformly at random within the state-space and to evaluate fσ
on these inputs. For example, one can consider Frozen Lake states obtained by placing the
walls, the holes, the target and the robot at random empty positions. However, a neural
network trained from such a dataset may perform poorly for states that play a key role
in the expected payoff of a strategy (i.e. states that represent crucial decisions), as such
states may not be likely to be selected at random within the state-space. The DAgger
(Dataset Aggregation) algorithm [RGB11], in contrast, offers a dataset generation method
based on running simulations in order to get a more realistic view of the states frequently
encountered in real plays. While this approach can be part of the answer, it may not provide
sufficiently many datapoints on the crucial decisions mentioned before, that may be few
and far-between.

We propose an algorithm named sharp DAgger that would detect these states, refine
the training set and retrain the network. This is done by simulating the strategy using the
learnt neural network on the MDP and finding counter-examples where the neural network
is performing poorly by comparing the value given by the network and the value fσ(s)

associated with the exact method.

In Algorithm 4, we present a method to train the neural network by an iterative
process that generates new data for the training set. In the first iteration, we train a neural

100

7.3 Evaluating a learnt strategy

network NN0 from an initial training dataset DATASET and in later iterations, we add
more interesting data-points in that set. Initially, one could either randomly generate a
small amount of data or simulate the MDP by following an uniform strategy. In iteration
i, starting from an initial state s0 in the MDP, we simulate a fixed number of paths until
a given horizon H . We extract from these paths the states for which the current neural
network NNi trained from DATASET fails to predict the correct values. We add them to our
dataset, then train the next iteration of the neural network. The decision on when to stop
the sharp DAgger loop is taken based on evaluations of the quality of the neural network
NNi at each iteration i.

Algorithm 4 Sharp Dataset Aggregation (Sharp DAgger)
Input:

A function fσ : S → R|A| encoding an expert strategy σ,
a state s0 ∈ S,
a distance function d,
a precision value ε ∈ R,
a horizon h ∈ N.

Output: A strategy σi that imitates the strategy σ
1: i← 0
2: DATASET = initial dataset
3: NN0 = neural network trained using DATASET
4: σ0 = strategy extracted from NN0

5: while i ≤ iters do
6: Pathsi = paths simulated following σi from s0 for h steps
7: for state s in paths p ∈ Pathsi do
8: if d(NNi(s), f(s)) ≥ ε then
9: Add (s, f(s)) to DATASET
10: end if
11: end for
12: i← i+ 1
13: NNi = neural network trained using DATASET
14: σi = strategy extracted from NNi

15: end while
16: return σi

7.3 Evaluating a learnt strategy

In order to evaluate the trained neural network, a traditional approach for machine
learning can report on a loss function for a test dataset. Alternatively, one can measure

101

7.3 Evaluating a learnt strategy

the accuracy of the network by reporting how many times the resulting learnt strategy has
differed from the expert strategy as a classifier. But this may not be sufficient to evaluate
how the learnt strategy is performing on the MDP. In Frozen Lake, consider a learned
strategy that returns the same action as the expert strategy for all states in the MDP, except
for one state where the learnt strategy gives a bad action that leads to a hole. Even though
the learnt strategy has an almost perfect accuracy, it would perform badly compared to the
expert strategy in real plays, and could lead to much worse rewards on expectation.

As such, we argue for the use of statistical model checking to evaluate the expected
reward of a (neural) strategy. In particular, we can use the approximate probabilistic model
checking method [Hér+04] where we simulate a set of paths following the expert strategy
on the one hand and the neural strategy on the other, then compare their average rewards
on these paths.

The following theorem gives a theoretical bound on the number of simulations needed
to get a probably approximately correct approximation of the real expected reward.

Theorem 7.1
Suppose for MDPM , there exists a < b such that a ≤ RewardhM(p) ≤ b for all paths
p inM . Let δ ∈ (0, 1] and ε ∈ (0, b− a]. Then for a strategy σ, suppose we sample
n ≥ (b−a)2

2ε2
ln(2

δ
) paths p1, p2 . . . pn independently at random from a state s in the

MDPM following the strategy σ. Let r = 1
n

∑n
i=1 RewardhM(pi). Then,

Pσs (|r − ValhM(s, σ)| ≥ ε) ≤ δ .

Proof We have n independent identically distributed random variables RewardhM(pi) with
expected value ValhM(s, σ).

Then, Eσs (r) = ValhM(s, σ). So, from Theorem 2.2, we will have,

Pσs (|r − ValhM(s, σ)| ≥ ε) ≤ 2 exp

(
− 2nε2

(b− a)2

)
.

As n ≥ (b−a)2

2ε2
ln(2

δ
), we get that Pσs (|r − ValhM(s, σ)| ≥ ε) ≤ δ. �

But in practice, we usually need much less number of simulations to achieve a good
approximation. For example, Consider the Frozen Lake layout in Figure 7.1.

102

7.3 Evaluating a learnt strategy

Figure 7.1: A 10× 10 Frozen Lake layout.

Using exact methods we calculated the optimal expected reward in this grid to be
0.827. In Figure 7.2, for n ∈ [1, 100], we independently simulated n paths using the
optimal strategy and plotted the estimated reward obtained from statistical model checking.
We see that we get a good approximation of the real expected reward with under 100

simulations.

10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

Number of simulations

A
ve
ra
ge

re
w
ar
d

Estimated reward
Expected reward

Figure 7.2: Statistical model checking for Frozen Lake

103

Chapter 8

Applications of imitation learning

In this Chapter, we report our experiments on two MDPs introduced in previous
chapters. In Frozen Lake (Example 2.6), a robot moves in a slippery grid and has to reach
the target while avoiding holes in the grid. This is an MDP that can be fully handled by
model-checkers (using exact methods), and as such we use it to report on the benefits of
using perfect data to train the surrogate strategy.

On the other hand, the Pac-Man game (Example 1.1) provides more challenging
MDPs to handle. There, we report on the performance of MCTS equipped with perfect or
neural advice and on the performance of a surrogate strategy trained on data obtained from
MCTS. The sharp DAgger algorithm (Algorithm 4) proves to be instrumental for learning
efficiently in Pac-Man.

8.1 Apllication 1: Frozen Lake

For the game described in Example 2.6, we randomly generated layouts of size 10x10

where we place walls at each cell in the border of the grid and with probability 0.1 at each
of the other cells. Then we place holes in remaining cells with probability 0.1. Finally, we
randomly place a target and an initial position in two of the remaining empty cells. If the
game is neither won nor lost within 1000 steps, the game is considered a draw.

8.1.1 Expert strategies

Exact algorithm Consider the state in the MDP where the robot is on the target position.
We label this state with target. Using the model checkers, we can compute the strategies
Opt(s) = arg maxσ Pσs (s |= ♦target) that maximizes the probability to reach the target
t starting from state s. The practical strategy that we are interested in should not only
maximize the probability to reach the target but also minimize the expected number of steps
needed to reach the target. For a path ρ in MC Mσ, we define len(ρ, target) = i if ρ[i] is

8.1 Apllication 1: Frozen Lake

the target state and for all j < i, ρ[j] is not the target set. Using formal methods techniques
described in Algorithm 2 (Section 2.4), we can calculate a strategy in

arg min
σ∈Opt(s)

Eσs (len(ρ, target) | ρ |= ♦target)) .

This strategy is optimal for reaching the target with infinite horizon.

Monte Carlo tree search We compared the exact strategy with the strategy generated
from Monte Carlo tree search with horizon H = 30. From state s, a search tree is
constructed for 40 iterations. Thus, the search tree constructed by the MCTS algorithm
contains up to 40 nodes. In each iteration of the MCTS algorithm, when a new node is
added to the search tree, 10 samples are obtained by using a uniform strategy to estimate
the value of the node.

8.1.2 Learnt strategies

Our training dataset contained 760k data-points which we used to imitate the expert
strategies. Hyperparameter tuning resulted in neural networks containing a 2D convolution
layer with 6 filters, a flattening layer and 2 dense layers.

8.1.3 Evaluation of the strategies

We randomly generated 1000 layouts and ran 100 games from each layout for 1000

steps using both expert strategies and the learnt strategies. If the robot does not reach the
target or any hole within 1000 steps, we consider it as a drawn game. The average outcomes
are reported in Figure 8.1. Using Storm, we calculate the optimal expected win rate to
be 93% on average in the generated layouts. This value denotes the probability to reach
the target eventually, using the optimal strategy. In practice, our statistical model checking
approach requires fixing a finite horizon. Figure 8.1 confirms that horizon 1000 is sufficient
as the expert strategy from Storm still reaches a win rate of 93%, same as the computed
value with this horizon.

In comparison, our strategy learnt from Storm had a win rate of 81%. The expert
strategy calculated using MCTS is suboptimal and showed a win rate of 77% while the
strategy learnt from it has a win rate of 69%. This highlights the benefits of using exact

105

8.2 Application 2: Pac-Man

0 20 40 60 80 100

Storm

Policy learnt
from Storm

MCTS

Policy learnt
from MCTS

93%

81%

77%

69%

Percentage of wins

Win Draw Loss

Figure 8.1: Perfect vs MCTS-based strategies for Frozen Lake.

methods to get noise-free data.

8.2 Application 2: Pac-Man

We performed our experiments on the game Pac-Man in a grid of size 9×21 described
in Figure 1.1. In our experiments, the ghosts always choose an action uniformly at random
from the legal actions available. As explained in Section 6.2.1, we can view this as an
MDP. Moreover, if Pac-Man does not win (eats all food pills) or lose (makes contact with
a ghost) within 300 steps, we consider it a draw.

8.2.1 Expert strategies

Monte Carlo tree search The state-space of the MDP is too large to apply directly to
find the optimal strategy. As a consequence, we decided to use Monte Carlo tree search
with a receding horizon of H = 10. From state s, a search tree is constructed with a
maximum depth of H for 40 iterations.We combined MCTS with the notion of advice as
used in Section 6.2 in order to play Pac-Man. In each iteration of the MCTS algorithm,
when a new node is added, 20 samples are obtained by using a uniform strategy to estimate
the value of the node among the paths that are safe i.e. where Pac-Man is not eaten by
a ghost. During the exploration of the search tree, we also restrict ourselves to actions
a that maximize the probability to stay safe for the next 8 steps, i.e., actions a such that
η8(s, a) = maxa′∈A η8(s, a′) as defined in Example 4.5. Since the online computation of

106

8.2 Application 2: Pac-Man

the η8 function is too expensive to be done at every node of the search tree, we only restrict
the root node of the tree to ensure the safety of the immediate decisions. We compare four
different variants of MCTS here:

a version without this expert (safety) advice,
one where it is used at the root node of the tree,
one where a neural advice is trained to imitate the safety advice and is used at the
root node, and
one where the neural advice is used at every node in the tree.

8.2.2 Neural advice

To speed up theMCTS procedure we train a neural network to imitate the safety advice.
We used Algorithm 4 to create a dataset to train on. We use the L∞ metric as the distance
function with precision value ε = 0.2 to find new data-points during the aggregation. In
other words, we add the value (s, (ηH(s, a))a∈A) to the dataset at the ith iteration of sharp
DAgger if

max
a∈A

(|ηH(s, a)− NNi(s, a)|) > 0.2 .

In each iteration, we simulate 4000 games for 300 steps to generatePathsi. We compare
the safety status of the neural networks at each iteration of sharp DAgger in Figure 8.2.

expert
policy

1 2 3 4 5 6 Policy learnt
from random data

0

20

40

60

80

100

70%

9%

26%

41%

56% 58% 57%

18%

P
er
ce
n
ta
ge

of
sa
fe

ga
m
es

Safe Not safe

Policies learnt from from sharp DAgger

Training dataset size : 32k 158k 176k 190k 200k 226k 226k

Figure 8.2: Sharp DAgger for Pac-Man neural advice

After 5 iterations, we observe that Pac-Man stays safe (for 300 steps) in 58% of games

107

8.2 Application 2: Pac-Man

when using the learnt strategy instead of staying safe in 70% of games with the strategy
calculated from model checking. Hyperparameter tuning stabilized on neural networks
using a 2D convolution layer with 6 filters, a flattening layer and 4 dense layers. The
entire training dataset generated from sharp DAgger contains 226k data-points. To check
the effectiveness of our method of data aggregation, we compare our learnt strategy with
a strategy trained on 226k randomly generated data-points. We confirm that this learnt
strategy performs much worse and stays safe in only 18% of games.

8.2.3 Using the neural advice in MCTS

To accommodate for the inherent noise in the output of the neural network NN,
we fix a threshold t = 0.9 and consider the advice that allows almost-optimal actions
with respect to t, i.e. the neural advice that restricts to actions a such that NN(s, a) ≥
0.9×maxa′∈ANN(s, a′).

We compare in Table 8.1 the performance of MCTS variants using expert or neural
strategies as advice. We ran each setup on 100 games. The Python implementation of

Algorithm win loss draw food score time per step

MCTS 55 44 1 19.58 153.62 9.0 s
MCTS + expert selection advice 90 9 1 24.39 512.13 17.4 s

MCTS + neural selection advice (at root) 71 29 0 22.28 318.93 9.6 s
MCTS + neural selection advice (every node) 87 13 0 23.44 500.98 9.8 s

Table 8.1: Summary of experiments with different ghost models and algorithms. All the
MCTS algorithm uses a simulation advice where we simulate only the safe paths.

MCTS that we rely on was not designed to optimize the performance in terms of computing
time. In our case, the MCTS algorithm without any selection advice uses 9 seconds to
decide on an action. Using the (formal methods based) expert advice at the root node of
MCTS increases the time per decision by 8 extra seconds. While the 9 seconds spent in
MCTS can be expected to be vastly lowered using code improvements,1 the model checking
done by Storm is already optimized. By replacing the expert advice with a neural advice,
we can avoid this fixed cost of 8 seconds per decision, as the network can be consulted in
3 ms instead.

While the neural advice is not as good as the expert advice (it ensures win in 71% of

1MCTS and other simulation-based techniques are highly amenable to parallelism [CWH08].

108

8.2 Application 2: Pac-Man

games instead of 90% when used identically at the root node of the MCTS tree), we can
afford to use it on every node of the search tree to dynamically prune the search. In this
way, we can get an 87% win-rate that is the best of both worlds: we approach the win-rate
of the expert advice with the computing time of the bare-bones version of MCTS.

8.2.3.1 Learning a surrogate strategy

We trained a surrogate neural network to imitate the expert strategy defined previously
as MCTS with a neural advice at every node, that reached an 87% win-rate while keeping
computing times as low as possible. To generate the dataset, we use our sharp DAgger
algorithm and simulate 4000 games with horizon 300 in each iteration. To evaluate how
well our strategies are performing, we compare the average number of wins obtained by
following them in Figure 8.3.

expert
policy

1 2 3 4 5 6 Policy learnt
from random data

0

20

40

60

80

100

87%

1%

19%

56%
60%

64% 63%

15%

P
er
ce
n
ta
ge

of
w
in
s

Win Draw Loss

Policies learnt from sharp DAgger

Training dataset size : 46k 110k 208k 329k 420k 515k 515k

Figure 8.3: Sharp DAgger for Pac-Man surrogate strategies.

After 5 iterations, we reach a strategy with a win-rate of 64%, which is higher than the
55% of the “standard” version of MCTS, while having almost no need for online computing
time as it is using a pre-trained neural network. Hyperparameter tuning stabilized on neural
networks using a 2D convolution layer with 5 filters, a flattening layer, 5 dense layers.
Finally, the training dataset generated with sharp DAgger contains 515k data-points. In
comparison, a strategy learned from a randomly generated dataset of size 515k is only able
to win in 15% of games, which confirms the importance of sharp DAgger in this setting.

109

Chapter 9

Conclusion

In this thesis, we study how to efficiently combine techniques from formal methods and
learning for online computation of a strategy that aims at optimizing the expected long term
reward in large systems modelled as Markov decision processes. This strategy is computed
in a finite horizon unfolding usingMonte Carlo tree search (MCTS)with a receding horizon.
As a way to apply techniques used in formal methods during Monte Carlo tree search, we
defined the notion of advice in Chapter 4. An advice, often symbolically written as a logical
formula and computed on-the-fly, prunes part of the tree unfolding to differentiate ‘good’
and ‘bad’ part of the tree. A notable difference from related techniques like shielding is
that building a shield requires one to construct the entire state-space of the MDP, whereas
our approach performs its computations on-the-fly based on the current position alone. In
Chapter 5, we augment the MCTS algorithm with advice and find sufficient conditions such
that the guarantees regarding convergence rate and failure probability of classical Monte
Carlo tree search are still maintained after this augmentation. Our version of MCTS uses
two advice, one during the selection phase and another during the simulation phase.

We also report the implementations of these techniques using systems modelled as
Markov decision precesses that may have 1020 states and beyond which cannot be handled
with exact algorithms. In particular, in Section 6.2, we show how using advice based on
formal methods significantly improves the performance of the Monte Carlo tree search
algorithm in the game of Pac-Man, a game where Pac-Man has to eat food pills which
avoiding contact with the ghosts.

We conclude that formal methods can provide good strategies and useful advice for
MCTS, albeit at a high computational cost. For this reason, in Chapter 7, we show how
to create a lower-latency neural advice by training a neural network to imitate an advice.
This allows one to obtain the best of both worlds: the performance boost of the advice but
without its computational cost. In Section 7.2, we propose a dataset-aggregation procedure
called sharp DAgger (Algorithm 4) which leverages formal methods in order to obtain better
quality data to train this neural network. We use statistical model checking to detect when
additional samples are needed and generate these samples on demandwhen the performance
of the learnt neural network does not match the quality of the strategy computed offline. In

9.1 Future works

Section 8.2, we report on the performance of MCTS equipped with neural advice and on
the performance of a strategy trained on data obtained fromMCTS using the sharp DAgger
algorithm.

In Section 6.3, we showed how to safely and efficiently schedule tasks in the case
where the structure of the system is known, but the exact distribution is not known. In this
case, the system is first learnt by observing the jobs arriving in the system and then safe and
(near)-optimal strategy is computed using MCTS with advice. Our experimental results
show that MCTS consistently provides better results than deep Q-learning, in particular
when the task systems are large, with huge state spaces.

The game Frozen Lake, where the robot moves in a slippery grid and has to reach the
target which avoiding the holes, can be modelled using an MDP that can be fully handled
by model-checkers using exact methods. The practical strategy that we are interested in
should not only maximize the probability to reach the target but also minimize the expected
number of steps needed to reach the target. This can be computed by exact algorithm
(Algorithm 2) described in Section 2.4. In Section 8.1, we use this game to report on the
benefits of using perfect data obtained from model checkers to train a neural network.

9.1 Future works

As future works, we are working on publishing our framework as a tool to apply the
methods discussed on additional case studies. We consider looking at cases where we need
to find safe and (near)-optimal strategies in larger systems, e.g., cyber-physical systems
where safety is highly crucial and hence use of advice based on formal methods is needed
to enforce safety. These systems are often represented by hybrid models more complicated
than discrete Markov decision processes and the Monte Carlo algorithms described in this
thesis would need some modifications to work in these settings. For example, in [Jen+22],
the authors discussed different simulation strategies that are needed for MCTS in priced
timed automata.

Future work could be interesting to implement a framework to automate the extraction
of SAT-based symbolic advice from the MDP. For that purpose, we have tried constructing
an and-inverter graph (AIG) [BHW11] from the symbolic description of the MDP, from
which, a SAT and a QBF formula can be generated. But in our approach, the graphs
created were too big to process. Given an advice formulated as a Boolean formula, the

111

9.1 Future works

SAT sampling-based techniques are highly efficient in computing samples satisfying that
formula. But in our experiments, the reject-based approach was faster at finding the
samples we needed. Future work may involve cases where SAT sampling-based methods
are essential as the paths satisfying the formula are too few to be found just by random
sampling.

112

Bibliography

[Abr87] Bruce Abramson. The expected-outcome model of two-player games. 1987.
url: http://academiccommons.columbia.edu/download/fedora_
content/download/ac:142327/CONTENT/CUCS-315-87.pdf.

[ACF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis
of the Multiarmed Bandit Problem”. In: Machine Learning 47.2-3 (2002),
pp. 235–256. doi: 10.1023/A:1013689704352.

[AD99] Robert B. Ash and Catherine A. Doleans-Dade. Probability and Measure
Theory. 2nd edition. Harcourt Academic Press, 1999.

[Aga+22] Chaitanya Agarwal et al. “PAC Statistical Model Checking of Mean Payoff
in Discrete- and Continuous-Time MDP”. In: Computer Aided Verification -
34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022,
Proceedings, Part II. Ed. by Sharon Shoham and Yakir Vizel. Vol. 13372.
Lecture Notes in Computer Science. Springer, 2022, pp. 3–25. doi: 10 .
1007/978-3-031-13188-2_1.

[Als+18] Mohammed Alshiekh et al. “Safe Reinforcement Learning via Shielding”. In:
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI
2018). AAAI Press, 2018, pp. 2669–2678.

[Ash+17] Pranav Ashok et al. “Value iteration for long-run average reward in Markov
decision processes”. In: International Conference on Computer Aided Verifi-
cation. Springer. 2017, pp. 201–221.

[Ash+18] Pranav Ashok et al. “Monte Carlo Tree Search for Verifying Reachability in
Markov Decision Processes”. In: Proceedings of the 8th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA 2018). Vol. 11245. Lecture Notes in Computer Science. Springer,
2018, pp. 322–335. doi: 10.1007/978-3-030-03421-4_21.

[Avn+19] G. Avni et al. “Run-Time Optimization for Learned Controllers Through
Quantitative Games”. In: CAV. 2019, pp. 630–649.

[BB12] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization.” In: Journal of machine learning research 13.2 (2012).

http://academiccommons.columbia.edu/download/fedora_content/download/ac:142327/CONTENT/CUCS-315-87.pdf
http://academiccommons.columbia.edu/download/fedora_content/download/ac:142327/CONTENT/CUCS-315-87.pdf
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-030-03421-4_21

BIBLIOGRAPHY

[BC64] George EP Box and David R Cox. “An analysis of transformations”. In: Jour-
nal of the Royal Statistical Society: Series B (Methodological) 26.2 (1964),
pp. 211–243.

[BCJ18] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. “Graph
Games and Reactive Synthesis”. In: Handbook of Model Checking. Ed. by
Edmund M. Clarke et al. Springer, 2018, pp. 921–962. doi: 10.1007/978-
3-319-10575-8_27.

[BCR20] DamienBusatto-Gaston,DebrajChakraborty, and Jean-FrançoisRaskin. “Monte
Carlo Tree Search Guided by Symbolic Advice for MDPs”. In: 31st Interna-
tional Conference on Concurrency Theory, CONCUR 2020, ed. by Igor Kon-
nov and Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020, 40:1–40:24. doi: 10.4230/LIPIcs.CONCUR.2020.40.

[Bel57a] Richard Bellman. “A Markovian decision process”. In: Journal of Mathemat-
ics and Mechanics 6.5 (1957), pp. 679–684. url: http://www.jstor.org/
stable/24900506.

[Bel57b] Richard Bellman.Dynamic Programming. 1st ed. Princeton, NJ, USA: Prince-
ton University Press, 1957.

[BHW11] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 And Beyond.
Tech. rep. 11/2. Altenbergerstr. 69, 4040 Linz, Austria: Institute for Formal
Models and Verification, Johannes Kepler University, 2011.

[Bie+06] Armin Biere et al. “Linear Encodings of Bounded LTL Model Checking”. In:
Logical Methods in Computer Science Volume 2, Issue 5 (Nov. 2006). doi:
10.2168/LMCS-2(5:5)2006.

[BJW02] Julien Bernet, David Janin, and Igor Walukiewicz. “Permissive strategies:
from parity games to safety games”. In: RAIRO-Theoretical Informatics and
Applications 36.3 (2002), pp. 261–275.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. isbn: 978-0-262-02649-9.

[BL69] J. RichardBuchi andLawrenceH.Landweber. “Solving Sequential Conditions
by Finite-State Strategies”. In: Transactions of the American Mathematical
Society 138 (1969), pp. 295–311. issn: 00029947. url: http://www.jstor.
org/stable/1994916.

[Bla62] David Blackwell. “Discrete dynamic programming”. In: The Annals of Math-
ematical Statistics (1962), pp. 719–726.

114

https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40
http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://doi.org/10.2168/LMCS-2(5:5)2006
http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916

BIBLIOGRAPHY

[Bla65] David Blackwell. “Discounted dynamic programming”. In: The Annals of
Mathematical Statistics 36.1 (1965), pp. 226–235.

[Boh+12] Aaron Bohy et al. “Acacia+, a Tool for LTL Synthesis”. In: Computer Aided
Verification. Ed. by P. Madhusudan and Sanjit A. Seshia. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 652–657. isbn: 978-3-642-31424-7.

[Brá+14] Tomás Brázdil et al. “Verification ofMarkov Decision Processes Using Learn-
ing Algorithms”. In: Proceedings of the 12th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2014). Vol. 8837.
Lecture Notes in Computer Science. Springer, 2014, pp. 98–114. doi: 10.
1007/978-3-319-11936-6_8.

[Bre+14] Romain Brenguier et al. “AbsSynthe: abstract synthesis from succinct safety
specifications”. In: Proceedings 3rd Workshop on Synthesis, SYNT 2014. Ed.
by Krishnendu Chatterjee, Rüdiger Ehlers, and Susmit Jha. Vol. 157. EPTCS.
2014, pp. 100–116. doi: 10.4204/EPTCS.157.11.

[Bro+12] Cameron Browne et al. “A Survey of Monte Carlo Tree Search Methods”.
In: IEEE Transactions on Computational Intelligence and AI in Games 4.1
(2012), pp. 1–43. doi: 10.1109/TCIAIG.2012.2186810.

[Bus+21] Damien Busatto-Gaston et al. “Safe Learning for Near-Optimal Scheduling”.
In:Quantitative Evaluation of Systems - 18th International Conference, QEST
2021, ed. by Alessandro Abate and Andrea Marin. Vol. 12846. Lecture Notes
in Computer Science. Springer, 2021, pp. 235–254. doi: 10.1007/978-3-
030-85172-9_13.

[But11] Giorgio C Buttazzo. Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Vol. 24. Springer Science&BusinessMedia,
2011.

[BW15] Hendrik Baier and Mark H. M. Winands. “MCTS-Minimax Hybrids”. In:
IEEETransactions onComputational Intelligence andAI inGames 7.2 (2015),
pp. 167–179. doi: 10.1109/TCIAIG.2014.2366555.

[Cau+47] Augustin Cauchy et al. “Méthode générale pour la résolution des systemes
d’équations simultanées”. In:Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–
538.

115

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.4204/EPTCS.157.11
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-030-85172-9_13
https://doi.org/10.1007/978-3-030-85172-9_13
https://doi.org/10.1109/TCIAIG.2014.2366555

BIBLIOGRAPHY

[CDS19] Arthur Clavière, Souradeep Dutta, and Sriram Sankaranarayanan. “Trajectory
Tracking Control for Robotic Vehicles Using Counterexample Guided Train-
ing of Neural Networks”. In: Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS 2018. Ed. by J.
Benton et al. AAAI Press, 2019, pp. 680–688. url: https://ojs.aaai.
org/index.php/ICAPS/article/view/3555.

[CE81] Edmund M Clarke and E Allen Emerson. “Design and synthesis of synchro-
nization skeletons using branching time temporal logic”. In: Workshop on
logic of programs. Springer. 1981, pp. 52–71.

[Cha+05] Hyeong Soo Chang et al. “An adaptive sampling algorithm for solvingMarkov
decision processes”. In: Operations Research 53.1 (2005), pp. 126–139.

[Cha+14] Supratik Chakraborty et al. “Distribution-Aware Sampling and Weighted
Model Counting for SAT”. In: Proceedings of the 28th AAAI Conference
on Artificial Intelligence, 2014 (AAAI 2014). AAAI Press, 2014, pp. 1722–
1730. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/
paper/view/8364.

[Cha+15] Supratik Chakraborty et al. “On Parallel Scalable Uniform SAT Witness
Generation”. In: Proceedings of the 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2015).
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 304–319.
doi: 10.1007/978-3-662-46681-0_25.

[Cha+17a] K. Chatterjee et al. “Optimizing Expectation with Guarantees in POMDPs”.
In: AAAI. 2017, pp. 3725–3732.

[Cha+17b] Krishnendu Chatterjee et al. “Optimizing Expectation with Guarantees in
POMDPs”. In: Proceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI 2017). AAAI Press, 2017, pp. 3725–3732.

[Cha12] K.Chatterjee. “Robustness of StructurallyEquivalentConcurrent ParityGames”.
In: FOSSACS. 2012, pp. 270–285.

[Cho+15] François Chollet et al. Keras. https://keras.io. 2015.

[Chu57] Alonzo Church. “Application of recursive arithmetic to the problem of circuit
synthesis”. In: Journal of Symbolic Logic 28.4 (1957).

[Cou06] Rémi Coulom. “Efficient selectivity and backup operators inMonte-Carlo tree
search”. In: Proceedings Computers and Games 2006. Springer-Verlag, 2006.

116

https://ojs.aaai.org/index.php/ICAPS/article/view/3555
https://ojs.aaai.org/index.php/ICAPS/article/view/3555
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
https://doi.org/10.1007/978-3-662-46681-0_25
https://keras.io

BIBLIOGRAPHY

[CWH08] GuillaumeM. J. -B. Chaslot,Mark H.M.Winands, andH. Jaap van denHerik.
“Parallel Monte-Carlo Tree Search”. In: Proceedings of the 6th International
Conference on Computers and Games (CG 2008). Ed. by H. Jaap van den
Herik et al. Vol. 5131. Lecture Notes in Computer Science. Springer, 2008,
pp. 60–71. doi: 10.1007/978-3-540-87608-3_6.

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[Dac+16] Przemyslaw Daca et al. “Faster Statistical Model Checking for Unbounded
Temporal Properties”. In: Proceedings of the 22nd International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2016). Vol. 9636. Lecture Notes in Computer Science. Springer,
2016, pp. 112–129. doi: 10.1007/978-3-662-49674-9_7.

[Deh+17] Christian Dehnert et al. “A Storm is Coming: A Modern Probabilistic Model
Checker”. In: Computer Aided Verification - 29th International Conference,
CAV 2017, ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture
Notes inComputer Science. Springer, 2017, pp. 592–600. doi: 10.1007/978-
3-319-63390-9_31.

[Dha+17] P. Dhariwal et al. OpenAI Baselines. https : / / github . com / openai /
baselines. 2017.

[DK] John DeNero and Dan Klein. CS 188 : Introduction to Artificial Intelligence.
url: https://inst.eecs.berkeley.edu/~cs188.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[GGR18] Gilles Geeraerts, Shibashis Guha, and Jean-François Raskin. “Safe and Opti-
mal Scheduling for Hard and Soft Tasks”. In: 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2018, ed. by SumitGanguly and ParitoshK. Pandya. Vol. 122. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 36:1–36:22. doi:
10.4230/LIPIcs.FSTTCS.2018.36.

[GKW82] Kamal Golabi, Ram B Kulkarni, and George B Way. “A statewide pavement
management system”. In: Interfaces 12.6 (1982), pp. 5–21.

117

https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://github.com/openai/baselines
https://github.com/openai/baselines
https://inst.eecs.berkeley.edu/~cs188
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.36

BIBLIOGRAPHY

[HAK20] MohammadhoseinHasanbeig, AlessandroAbate, andDaniel Kroening. “Cau-
tious Reinforcement Learning with Logical Constraints”. In: Proceedings of
the 19th International Conference on Autonomous Agents and Multiagent Sys-
tems, (AAMAS 2020). 2020, pp. 483–491. url: https://dl.acm.org/doi/
abs/10.5555/3398761.3398821.

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[Hen+22] Christian Hensel et al. “The probabilistic model checker Storm”. In: Inter-
national Journal on Software Tools for Technology Transfer 24.4 (2022),
pp. 589–610.

[Hér+04] Thomas Hérault et al. “Approximate probabilistic model checking”. In: Inter-
national Workshop on Verification, Model Checking, and Abstract Interpreta-
tion. Springer. 2004, pp. 73–84.

[Her+18] Michael Hertneck et al. “Learning an Approximate Model Predictive Con-
troller With Guarantees”. In: IEEE Control. Syst. Lett. 2.3 (2018), pp. 543–
548. doi: 10.1109/LCSYS.2018.2843682. url: https://doi.org/10.
1109/LCSYS.2018.2843682.

[Hin+12] Geoffrey E Hinton et al. “Improving neural networks by preventing co-
adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[HJ94] Hans Hansson and Bengt Jonsson. “A logic for reasoning about time and
reliability”. In: Formal aspects of computing 6.5 (1994), pp. 512–535.

[Hoe63] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded Random
Variables”. In: Journal of the American Statistical Association 58.301 (1963),
pp. 13–30. doi: 10.1080/01621459.1963.10500830.

[How60] RonaldAHoward. “Dynamic programming andmarkov processes.” In: (1960).

[Iva+19] Radoslav Ivanov et al. “Verisig: verifying safety properties of hybrid systems
with neural network controllers”. In: Proceedings of the 22nd ACM Inter-
national Conference on Hybrid Systems: Computation and Control. 2019,
pp. 169–178.

[Jan+14] Nils Jansen et al. “Safe Reinforcement Learning Using Probabilistic Shields
(Invited Paper)”. In: 31st International Conference on Concurrency Theory,
CONCUR 2020. Vol. 171. 2014, 3:1–3:16. doi: 10.4230/LIPIcs.CONCUR.
2020.3.

118

https://dl.acm.org/doi/abs/10.5555/3398761.3398821
https://dl.acm.org/doi/abs/10.5555/3398761.3398821
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3

BIBLIOGRAPHY

[Jen+22] PeterGjøl Jensen et al. “MonteCarlo Tree Search for PricedTimedAutomata”.
In: Quantitative Evaluation of Systems. Ed. by Erika Ábrahám and Marco
Paolieri. Cham: Springer International Publishing, 2022, pp. 381–398. isbn:
978-3-031-16336-4.

[JV+22] Sebastian Junges, Matthias Volk, et al. Stormpy. https://github.com/
moves-rwth/stormpy. 2022.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: Amethod for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.
org/abs/1412.6980.

[KH06] Wook Hyun Kwon and Soo Hee Han. Receding horizon control: model pre-
dictive control for state models. Springer Science & Business Media, 2006.

[KM17] Jan Křetínský and Tobias Meggendorfer. “Efficient strategy iteration for mean
payoff in Markov decision processes”. In: International Symposium on Au-
tomated Technology for Verification and Analysis. Springer. 2017, pp. 380–
399.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and S.
Qadeer. Vol. 6806. LNCS. Springer, 2011, pp. 585–591.

[KPR18] Jan Křetínský, Guillermo A. Pérez, and Jean-François Raskin. “Learning-
BasedMean-PayoffOptimization in an UnknownMDP under Omega-Regular
Constraints”. In:Proceedings of the 29th International Conference onConcur-
rency Theory (CONCUR 2018). Vol. 118. Leibniz International Proceedings
in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
8:1–8:18.

[KS06] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Plan-
ning”. In: Proceedings of the 17th European Conference on Machine Learn-
ing (ECML 2006). Vol. 4212. Lecture Notes in Computer Science. Springer,
2006, pp. 282–293. doi: 10.1007/11871842_29.

[Lem12] Claude Lemaréchal. “Cauchy and the gradient method”. In: Doc Math Extra
251.254 (2012), p. 10.

119

https://github.com/moves-rwth/stormpy
https://github.com/moves-rwth/stormpy
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/11871842_29

BIBLIOGRAPHY

[LR85] T.L Lai and Herbert Robbins. “Asymptotically Efficient Adaptive Allocation
Rules”. In: Adv. Appl. Math. 6.1 (Mar. 1985), pp. 4–22. issn: 0196-8858. doi:
10.1016/0196-8858(85)90002-8.

[LT93] Nancy G Leveson and Clark S Turner. “An investigation of the Therac-25
accidents”. In: Computer 26.7 (1993), pp. 18–41.

[McN65] Robert McNaughton. “Finite-state infinite games”. In: Project MAC Rep
(1965).

[MN81] J.-F. Mertens and A. Neyman. “Stochastic games”. In: International Journal
of Game Theory 10.2 (1981), pp. 53–66.

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: nature 518.7540 (2015), pp. 529–533.

[MP43] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115–133.

[Mun14] Rémi Munos. “From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning”. In: Foundations and Trends
in Machine Learning 7.1 (2014), pp. 1–129. doi: 10.1561/2200000038.

[OMa+19] Tom O’Malley et al. KerasTuner. https://github.com/keras-team/
keras-tuner. 2019.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley, 1994.
isbn: 978-0-47161977-2. doi: 10.1002/9780470316887.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of con-
current systems in CESAR”. In: International Symposium on programming.
Springer. 1982, pp. 337–351.

[RB10] StéphaneRoss andDrewBagnell. “Efficient reductions for imitation learning”.
In: Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics. JMLR Workshop and Conference Proceedings. 2010,
pp. 661–668.

[RGB11] Stéphane Ross, GeoffreyGordon, andDrewBagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceed-
ings of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 627–635.

120

https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1561/2200000038
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/10.1002/9780470316887

BIBLIOGRAPHY

[Ros10] SheldonM.Ross. Introduction to probabilitymodels. 10th edition.Amsterdam
Heidelberg: Elsevier, 2010. isbn: 978-0-12-375686-2.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[Sil+16] David Silver et al. “Mastering the Game of Go with Deep Neural Networks
and Tree Search”. In: Nature 529.7587 (2016), pp. 484–489. doi: 10.1038/
nature16961.

[SL94] Roberto Segala and Nancy Lynch. “Probabilistic simulations for probabilistic
processes”. In: International Conference on Concurrency Theory. Springer.
1994, pp. 481–496.

[Sol03] E. Solan. “Continuity of the value of competitiveMarkov decision processes”.
In: Journal of Theoretical Probability 16 (2003), pp. 831–845.

[Val84] Leslie G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11
(1984), pp. 1134–1142.

[WD92] C. J. C. H. Watkins and P. Dayan. “Technical Note Q-Learning”. In:Machine
Learning 8 (1992), pp. 279–292.

[YJ00] In-KwonYeo andRichardA Johnson. “A new family of power transformations
to improve normality or symmetry”. In: Biometrika 87.4 (2000), pp. 954–959.

[YS02] Håkan LS Younes and Reid G Simmons. “Probabilistic verification of discrete
event systems using acceptance sampling”. In: International Conference on
Computer Aided Verification. Springer. 2002, pp. 223–235.

121

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961

Index

2-player game, 10, 11, 27, 46, 94
Finite reachability, 29
Finite safety, 29
Reachability, 12, 29
Safety, 12, 29, 46, 94

σ-algebra, 13, 16

Activation function, 49
Advice, 94

Empty advice, 63
Enforceable advice, 63–65, 70, 81, 94
Neural advice, 69, 110
Symbolic advice, 62
Universal advice, 63

Convolution, 50, 99, 105, 109

Dataset aggregation (DAgger)
Sharp DAgger, 100, 109–111

Decision-time planning, 51
Drift conditions, 37, 72
Dropout, 50

End-component, 27
Maximal end-component, 27

Good for sampling, 87
Good for efficient sampling, 89

Gradient descent, 49

Hyperparameter tuning, 50, 99

Imitation learning, 98

Job, 43

Learning rate, 49
Loss function, 49, 99, 101

Markov chain, 15, 21, 23

Markov decision process, 21
Monte Carlo tree search (MCTS), 39, 70
Multi-armed bandit problem, 36

Neural network, 48
Convolutional neural network, 50, 99

Non-stationary bandit problem, 37
Nondeterminism, 9

Optimal strategy, 25
ε-optimal strategy, 24, 26

PAC learning, 85
Efficient PAC learning, 85
Safe PAC learning, 85

Probabilistic computation tree logic, 18
Probability, 13, 15, 21, 70
Probability measure, 13, 16
Pruned unfolding, 59, 65
Pruning of an MDP, 58, 65, 79

Random variable, 13
Receding horizon control, 51
Rectified linear unit (ReLU), 49, 99
Regret, 36
Reward

Average reward, 24
Expected average reward, 24
Expected total reward, 24
Total reward, 24, 39, 41, 77

Sigmoid, 49, 99
Strategy

Deterministic strategy, 22, 24, 28
Memoryless strategy, 11, 22, 24
Most general strategy, 12, 46, 65, 95
Nondeterministic strategy, 11, 23

INDEX

Probabilistic strategy, 22
Strategy in games, 11, 28

Strongly aperiodic MDP, 26, 27, 52

Task, 43
Hard, 43

Task scheduling problem, 44
Task system, 43, 84
Tasks

Soft, 43
Tensor, 49, 81
Transition system, 9, 10

Unfolding of an MDP, 52, 59, 65
Upper confidence bound (UCB), 36, 37
Upper confidence bound for trees(UCT), 41,

80

123

	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Related works
	1.4 Organization of this thesis

	2 Preliminaries
	2.1 Transition systems and games
	2.2 Probability
	2.3 Probabilistic systems
	2.4 Distance-optimal strategy for reachability
	2.5 Multi-armed bandit problem
	2.6 Monte Carlo tree search
	2.7 Task systems
	2.8 Artificial neural networks

	3 Formal methods in decision-time planning
	3.1 Receding horizon control
	3.2 Bisimulation in MDPs
	3.3 Pruning

	4 Advice
	4.1 Symbolic advice
	4.2 Sampling according to a symbolic advice
	4.3 On-the-fly computation of an enforceable advice

	5 Monte Carlo tree search with advice
	5.1 Generalized Monte Carlo tree search
	5.2 MCTS with symbolic advice

	6 Applications of MCTS with advice
	6.1 Description of the framework
	6.2 Application 1: Pacman
	6.3 Application 2 : safe and optimal scheduling of tasks

	7 Imitation learning
	7.1 Training a neural network
	7.2 Dataset aggregration : Formally sharp DAgger
	7.3 Evaluating a learnt strategy

	8 Applications of imitation learning
	8.1 Apllication 1: Frozen Lake
	8.2 Application 2: Pac-Man

	9 Conclusion
	9.1 Future works

